SLUSER8C June   2022  – March 2023 UCC28C50 , UCC28C51 , UCC28C52 , UCC28C53 , UCC28C54 , UCC28C55 , UCC28C56H , UCC28C56L , UCC28C57H , UCC28C57L , UCC28C58 , UCC28C59 , UCC38C50 , UCC38C51 , UCC38C52 , UCC38C53 , UCC38C54 , UCC38C55

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Detailed Pin Description
        1. 8.3.1.1 COMP
        2. 8.3.1.2 FB
        3. 8.3.1.3 CS
        4. 8.3.1.4 RT/CT
        5. 8.3.1.5 GND
        6. 8.3.1.6 OUT
        7. 8.3.1.7 VDD
        8. 8.3.1.8 VREF
      2. 8.3.2  Undervoltage Lockout
      3. 8.3.3  ±1% Internal Reference Voltage
      4. 8.3.4  Current Sense and Overcurrent Limit
      5. 8.3.5  Reduced-Discharge Current Variation
      6. 8.3.6  Oscillator Synchronization
      7. 8.3.7  Soft-Start Timing
      8. 8.3.8  Enable and Disable
      9. 8.3.9  Slope Compensation
      10. 8.3.10 Voltage Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 UVLO Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Input Bulk Capacitor and Minimum Bulk Voltage
        2. 9.2.2.2  Transformer Turns Ratio and Maximum Duty Cycle
        3. 9.2.2.3  Transformer Inductance and Peak Currents
        4. 9.2.2.4  Output Capacitor
        5. 9.2.2.5  Current Sensing Network
        6. 9.2.2.6  Gate Drive Resistor
        7. 9.2.2.7  VREF Capacitor
        8. 9.2.2.8  RT/CT
        9. 9.2.2.9  Start-Up Circuit
        10. 9.2.2.10 Voltage Feedback Compensation
          1. 9.2.2.10.1 Power Stage Poles and Zeroes
          2. 9.2.2.10.2 Slope Compensation
          3. 9.2.2.10.3 Open-Loop Gain
          4. 9.2.2.10.4 Compensation Loop
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Precautions
        2. 9.4.1.2 Feedback Traces
        3. 9.4.1.3 Bypass Capacitors
        4. 9.4.1.4 Compensation Components
        5. 9.4.1.5 Traces and Ground Planes
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reduced-Discharge Current Variation

The oscillator design for the UCC28C5x controllers incorporates a trimmed discharge current to accurately program maximum duty cycle and operating frequency. In its basic operation, a timing capacitor (CCT) is charged by a current source, formed by the timing resistor (RRT) connected to the device reference voltage (VREF). The oscillator design incorporates comparators to monitor the amplitude of the timing capacitor voltage. The exponentially shaped waveform charges up to a specific amplitude representing the oscillator upper threshold of 3 V. After the controller reaches this level, an internal current sink to ground turns on and the capacitor begins to discharge. This discharge continues until the oscillator lower threshold has reached 0.7 V at which point the current sink is turned off. Next, the timing capacitor starts charging again and a new switching cycle begins.

GUID-20221101-SS0I-LQBX-1CBF-MWKPWKLZTRQ2-low.svg Figure 8-4 Oscillator Circuit

While the device discharges the timing capacitor, resistor RRT continues attempting to charge CCT. It is the exact ratio of these two currents, the discharging versus the charging current, which specifies the maximum duty cycle. During the discharge time of CCT, the device output is always off. This represents an ensured minimum off time of the switch, commonly referred to as dead-time. To program an accurate maximum duty cycle, use the information provided in Maximum Duty Cycle vs Oscillator Frequency for maximum duty cycle versus oscillator frequency. Any number of maximum duty cycles can be programmed for a given frequency by adjusting the values of RRT and CCT. After selecting the value of RRT, find the oscillator timing capacitance using the curves in Oscillator Frequency vs Timing Resistance and Capacitance. However, because resistors are available in more precise increments, typically 1%, and capacitors are only available in 5% accuracy, it might be more practical to select the closest capacitor value first and then calculate the timing resistor value.