JAJSDJ8A April   2017  – October 2021 ADC12D1620QML-SP

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Converter Electrical Characteristics: Static Converter Characteristics
    6. 6.6  Converter Electrical Characteristics: Dynamic Converter Characteristics
    7. 6.7  Converter Electrical Characteristics: Analog Input/Output and Reference Characteristics
    8. 6.8  Converter Electrical Characteristic: Channel-to-Channel Characteristics
    9. 6.9  Converter Electrical Characteristics: LVDS CLK Input Characteristics
    10. 6.10 Electrical Characteristics: AutoSync Feature
    11. 6.11 Converter Electrical Characteristics: Digital Control and Output Pin Characteristics
    12. 6.12 Converter Electrical Characteristics: Power Supply Characteristics
    13. 6.13 Converter Electrical Characteristics: AC Electrical Characteristics
    14. 6.14 Electrical Characteristics: Delta Parameters
    15. 6.15 Timing Requirements: Serial Port Interface
    16. 6.16 Timing Requirements: Calibration
    17. 6.17 Quality Conformance Inspection
    18. 6.18 Timing Diagrams
    19. 6.19 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Operation Summary
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Control and Adjust
        1. 7.3.1.1 AC- and DC-Coupled Modes
        2. 7.3.1.2 Input Full-Scale Range Adjust
        3. 7.3.1.3 Input Offset Adjust
        4. 7.3.1.4 Low-Sampling Power-Saving Mode (LSPSM)
        5. 7.3.1.5 DES Timing Adjust
        6. 7.3.1.6 Sampling Clock Phase Adjust
      2. 7.3.2 Output Control and Adjust
        1. 7.3.2.1 SDR / DDR Clock
        2. 7.3.2.2 LVDS Output Differential Voltage
        3. 7.3.2.3 LVDS Output Common-Mode Voltage
        4. 7.3.2.4 Output Formatting
        5. 7.3.2.5 Test-Pattern Mode
        6. 7.3.2.6 Time Stamp
      3. 7.3.3 Calibration Feature
        1. 7.3.3.1 Calibration Control Pins and Bits
        2. 7.3.3.2 How to Execute a Calibration
        3. 7.3.3.3 On-Command Calibration
        4. 7.3.3.4 Calibration Adjust
          1. 7.3.3.4.1 Read/Write Calibration Settings
        5. 7.3.3.5 Calibration and Power-Down
        6. 7.3.3.6 Calibration and the Digital Outputs
      4. 7.3.4 Power Down
      5. 7.3.5 Low-Sampling Power-Saving Mode (LSPSM)
    4. 7.4 Device Functional Modes
      1. 7.4.1 DES/Non-DES Mode
      2. 7.4.2 Demux/Non-Demux Mode
    5. 7.5 Programming
      1. 7.5.1 Control Modes
        1. 7.5.1.1 Non-ECM
          1. 7.5.1.1.1  Dual-Edge Sampling Pin (DES)
          2. 7.5.1.1.2  Non-Demultiplexed Mode Pin (NDM)
          3. 7.5.1.1.3  Dual Data-Rate Phase Pin (DDRPh)
          4. 7.5.1.1.4  Calibration Pin (CAL)
          5. 7.5.1.1.5  Low-Sampling Power-Saving Mode Pin (LSPSM)
          6. 7.5.1.1.6  Power-Down I-Channel Pin (PDI)
          7. 7.5.1.1.7  Power-Down Q-Channel Pin (PDQ)
          8. 7.5.1.1.8  Test-Pattern Mode Pin (TPM)
          9. 7.5.1.1.9  Full-Scale Input-Range Pin (FSR)
          10. 7.5.1.1.10 AC- or DC-Coupled Mode Pin (VCMO)
          11. 7.5.1.1.11 LVDS Output Common-Mode Pin (VBG)
        2. 7.5.1.2 Extended Control Mode
          1. 7.5.1.2.1 Serial Interface
    6. 7.6 Register Maps
      1. 7.6.1 Register Definitions
  8. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
        1. 8.1.1.1 Acquiring the Input
        2. 8.1.1.2 Driving the ADC in DES Mode
        3. 8.1.1.3 FSR and the Reference Voltage
        4. 8.1.1.4 Out-Of-Range Indication
        5. 8.1.1.5 AC-Coupled Input Signals
        6. 8.1.1.6 DC-Coupled Input Signals
        7. 8.1.1.7 Single-Ended Input Signals
      2. 8.1.2 Clock Inputs
        1. 8.1.2.1 CLK Coupling
        2. 8.1.2.2 CLK Frequency
        3. 8.1.2.3 CLK Level
        4. 8.1.2.4 CLK Duty Cycle
        5. 8.1.2.5 CLK Jitter
        6. 8.1.2.6 CLK Layout
      3. 8.1.3 LVDS Outputs
        1. 8.1.3.1 Common-Mode and Differential Voltage
        2. 8.1.3.2 Output Data Rate
        3. 8.1.3.3 Terminating Unused LVDS Output Pins
      4. 8.1.4 Synchronizing Multiple ADC12D1620 Devices in a System
        1. 8.1.4.1 AutoSync Feature
        2. 8.1.4.2 DCLK Reset Feature
      5. 8.1.5 Temperature Sensor
    2. 8.2 Radiation Environments
      1. 8.2.1 Total Ionizing Dose
      2. 8.2.2 Single Event Latch-Up and Functional Interrupt
      3. 8.2.3 Single Event Upset
    3. 8.3 Cold Sparing
  9. Power Supply Recommendations
    1. 9.1 System Power-On Considerations
      1. 9.1.1 Control Pins
      2. 9.1.2 Power On in Non-ECM
      3. 9.1.3 Power On in ECM
      4. 9.1.4 Power-on and Data Clock (DCLK)
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Planes
      2. 10.1.2 Bypass Capacitors
      3. 10.1.3 Ground Planes
      4. 10.1.4 Power System Example
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
    4. 10.4 Board Mounting Recommendation
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Third-Party Products Disclaimer
    2. 11.2 ドキュメントの更新通知を受け取る方法
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 用語集
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Engineering Samples

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • FVA|256
  • NAA|376
サーマルパッド・メカニカル・データ
発注情報
Serial Interface

The ADC12D1620 offers a serial interface that allows access to the sixteen control registers within the device. The serial interface is a generic 4-wire (optionally 3-wire) synchronous interface that is compatible with SPI type interfaces that are used on many micro-controllers and DSP controllers. Each serial interface access cycle is exactly 24 bits long. A register-read or register-write can be accomplished in one cycle. The signals are defined in such a way that the user can opt to simply join SDI and SDO signals in their system to accomplish a single, bidirectional SDI/O signal. A summary of the pins for this interface may be found in Table 7-10. See Figure 6-9 for the timing diagram and Timing Requirements: Serial Port Interface for timing specification details. Control register contents are retained when the device is put into power-down mode. If this feature is unused, the SCLK, SDI, and, SCS pins may be left floating because they each have an internal pullup.

Table 7-10 Serial Interface Pins
PINNAME
C4SCS (serial chip select bar)
C5SCLK (serial clock)
B4SDI (serial data in)
A3SDO (serial data out)

SCS: Each assertion (logic-low) of this signal starts a new register access, that is, the SDI command field must be ready on the following SCLK rising edge. The user is required to de-assert this signal after the 24th clock. If the SCS is de-asserted before the 24th clock, no data read/write occurs. For a read operation, if the SCS is asserted longer than 24 clocks, the SDO output holds the D0 bit until SCS is de-asserted. For a write operation, if the SCS is asserted longer than 24 clocks, data write occurs normally through the SDI input upon the 24th clock. Setup and hold times, tSCS and tHCS, with respect to the SCLK must be observed. SCS must be toggled in between register access cycles.

SCLK: This signal is used to register the input data (SDI) on the rising edge and to source the output data (SDO) on the falling edge. The user may disable the clock and hold it at logic-low. There is no minimum frequency requirement for SCLK; see fSCLK in Timing Requirements: Serial Port Interface for more details.

SDI: Each register access requires a specific 24-bit pattern at this input, consisting of a command field and a data field. If the SDI and SDO wires are shared (3-wire mode), during read operations it is necessary to tri-state the primary must be tristate while the data field is output by the ADC on SDO. The primary must be tri-state before the falling edge of the 8th clock. If SDI and SDO are not shared (4-wire mode), then this is not necessary. Setup and hold times, tSH and tSSU, with respect to the SCLK must be observed.

SDO: This output is normally tri-state and is driven only when SCS is asserted, the first 8 bits of command data have been received and it is a READ operation. The data is shifted out, MSB first, starting with the falling edge of the 8th clock. At the end of the access, when SCS is de-asserted, this output is tri-state once again. If an invalid address is accessed, the data sourced will consist of all zeroes. If it is a read operation, there is a bus turnaround time, tBSU, from when the last bit of the command field was read in until the first bit of the data field is written out.

Table 7-11 shows the serial interface bit definitions.

Table 7-11 Command and Data Field Definitions
BIT NO.NAMECOMMENTS
1Read/Write (R/W)1b indicates a read operation.
0b indicates a write operation.
2-3ReservedBits must be set to 10b.
4-7A<3:0>16 registers may be addressed. The order is MSB first.
8XThis is a "don't care" bit.
9-24D<15:0>Data written to or read from addressed register.

The serial data protocol is shown for a read and write operation in Figure 7-3 and Figure 7-4, respectively.

GUID-FB9FAB70-B50E-4E48-930D-12AF7162F17E-low.gifFigure 7-3 Serial Data Protocol - Read Operation
GUID-0B7B6097-5617-4BA0-87B6-3D25FA938B4F-low.gifFigure 7-4 Serial Data Protocol - Write Operation