JAJSSY9 February   2024 ADC12DL1500 , ADC12DL2500 , ADC12DL500

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: DC Specifications
    6. 5.6  Electrical Characteristics: Power Consumption
    7. 5.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 5.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 5.9  Timing Requirements
    10. 5.10 Switching Characteristics
    11. 5.11 Timing Diagrams
    12. 5.12 Typical Characteristics - ADC12DL500
    13. 5.13 Typical Characteristics - ADC12DL1500 (1GSPS)
    14. 5.14 Typical Characteristics - ADC12DL1500 (1.5GSPS)
    15. 5.15 Typical Characteristics - ADC12DL2500 (2GSPS)
    16. 5.16 Typical Characteristics - ADC12DL2500 (2.5GSPS)
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Analog Inputs
        1. 6.3.1.1 Analog Input Protection
        2. 6.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 6.3.1.3 Analog Input Offset Adjust
      2. 6.3.2 ADC Core
        1. 6.3.2.1 ADC Theory of Operation
        2. 6.3.2.2 ADC Core Calibration
        3. 6.3.2.3 ADC Overrange Detection
        4. 6.3.2.4 Code Error Rate (CER)
        5. 6.3.2.5 Internal Dither
      3. 6.3.3 Timestamp
      4. 6.3.4 Clocking
        1. 6.3.4.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 6.3.4.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 6.3.4.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 6.3.4.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 6.3.4.3.2 Automatic SYSREF Calibration
      5. 6.3.5 LVDS Digital Interface
        1. 6.3.5.1 Multi-Device Synchronization and Deterministic Latency Using Strobes
          1. 6.3.5.1.1 Dedicated Strobe Pins
          2. 6.3.5.1.2 Reduced Width Interface With Dedicated Strobe Pins
          3. 6.3.5.1.3 LSB Replacement With a Strobe
          4. 6.3.5.1.4 Strobe Over All Data Pairs
      6. 6.3.6 Alarm Monitoring
        1. 6.3.6.1 Clock Upset Detection
      7. 6.3.7 Temperature Monitoring Diode
      8. 6.3.8 Analog Reference Voltage
    4. 6.4 Device Functional Modes
      1. 6.4.1 Dual-Channel Mode (Non-DES Mode)
      2. 6.4.2 Internal Dither Modes
      3. 6.4.3 Single-Channel Mode (DES Mode)
      4. 6.4.4 LVDS Output Driver Modes
      5. 6.4.5 LVDS Output Modes
        1. 6.4.5.1 Staggered Output Mode
        2. 6.4.5.2 Aligned Output Mode
        3. 6.4.5.3 Reducing the Number of Strobes
        4. 6.4.5.4 Reducing the Number of Data Clocks
        5. 6.4.5.5 Scrambling
        6. 6.4.5.6 Digital Interface Test Patterns and LVSD SYNC Functionality
          1. 6.4.5.6.1 Active Pattern
          2. 6.4.5.6.2 Synchronization Pattern
          3. 6.4.5.6.3 User-Defined Test Pattern
      6. 6.4.6 Power-Down Modes
      7. 6.4.7 Calibration Modes and Trimming
        1. 6.4.7.1 Foreground Calibration Mode
      8. 6.4.8 Offset Calibration
      9. 6.4.9 Trimming
    5. 6.5 Programming
      1. 6.5.1 Using the Serial Interface
        1. 6.5.1.1 SCS
        2. 6.5.1.2 SCLK
        3. 6.5.1.3 SDI
        4. 6.5.1.4 SDO
        5. 6.5.1.5 80
        6. 6.5.1.6 Streaming Mode
        7. 6.5.1.7 82
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Reconfigurable Dual-Channel 2.5GSPS or Single-Channel 5GSPS Oscilloscope
        1. 7.2.1.1 Design Requirements
          1. 7.2.1.1.1 Input Signal Path
          2. 7.2.1.1.2 Clocking
          3. 7.2.1.1.3 ADC12DLx500
        2. 7.2.1.2 Application Curves
    3. 7.3 Initialization Set Up
    4. 7.4 Power Supply Recommendations
      1. 7.4.1 Power Sequencing
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Register Maps
    1. 8.1 SPI_REGISTER_MAP Registers
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
ADC12DLx500

The ADC12DLx500 is used for oscilloscope applications. The ability to tradeoff channel count and sampling speed allows designers to build flexible hardware to meet multiple needs. This flexibility saves development time and cost, allows hardware reuse for various projects, and enables software upgrade paths for additional functionality. The low code-error rate eliminates concerns about undesired time-domain glitches or sparkle codes. This rate makes the ADC12DLx500 a perfect fit for long-duration transient detection measurements and reduces the probability of false triggers. The input common-mode voltage of 0V allows the driving amplifiers to use equal split power supplies that center the amplifier output common-mode voltage at 0V and eliminates the need for common-mode voltage shifting before the ADC inputs. The high input bandwidth of the ADC12DLx500 simplifies the design of the driving amplifier circuit and antialiasing, low-pass filter. The use of dual-edge sampling (DES) in single-channel mode eliminates the need to change the clock frequency when switching between dual- and single-channel modes and simplifies synchronization by relaxing the setup and hold timing requirements of SYSREF. The tAD adjust circuit allows the user to time-align the sampling instances of multiple ADC12DLx500 devices.