SBASAU8 December   2024 ADC3649

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Consumption
    6. 6.6  Electrical Characteristics - DC Specifications
    7. 6.7  Electrical Characteristics - AC Specifications (ADC3648 - 250 MSPS)
    8. 6.8  Electrical Characteristics - AC Specifications (ADC3649 - 500 MSPS)
    9. 6.9  Timing Requirements
    10. 6.10 Typical Characteristics, ADC3648
    11. 6.11 Typical Characteristics, ADC3649
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Inputs
        1. 8.3.1.1 Nyquist Zone Selection
        2. 8.3.1.2 Analog Front End Design
      2. 8.3.2 Sampling Clock
      3. 8.3.3 Multi-Chip Synchronization
        1. 8.3.3.1 SYSREF Monitor
      4. 8.3.4 Time-Stamp
      5. 8.3.5 Overrange
      6. 8.3.6 External Voltage Reference
      7. 8.3.7 Digital Gain
      8. 8.3.8 Decimation Filter
        1. 8.3.8.1 Uncommon Decimation Ratios
        2. 8.3.8.2 Decimation Filter Response
        3. 8.3.8.3 Decimation Filter Configuration
        4. 8.3.8.4 Numerically Controlled Oscillator (NCO)
      9. 8.3.9 Digital Interface
        1. 8.3.9.1 Parallel LVDS
        2. 8.3.9.2 Serial LVDS (SLVDS) with Decimation
          1. 8.3.9.2.1 SLVDS - Status Bit Insertion
        3. 8.3.9.3 Output Data Format
        4. 8.3.9.4 32-bit Output Resolution
        5. 8.3.9.5 Output Scrambler
        6. 8.3.9.6 Output MUX
        7. 8.3.9.7 Test Pattern
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Latency Mode
      2. 8.4.2 Digital Channel Averaging
      3. 8.4.3 Power Down Mode
    5. 8.5 Programming
      1. 8.5.1 GPIO Programming
      2. 8.5.2 Register Write
      3. 8.5.3 Register Read
      4. 8.5.4 Device Programming
      5. 8.5.5 Register Map
      6. 8.5.6 Detailed Register Description
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Wideband Spectrum Analyzer
      2. 9.2.2 Design Requirements
        1. 9.2.2.1 Input Signal Path
        2. 9.2.2.2 Clocking
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Sampling Clock
      4. 9.2.4 Application Performance Plots
    3. 9.3 Initialization Set Up
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

SYSREF Monitor

The SYSREF input signal rising edge must be edge aligned with the falling edge of the sampling clock to maximize the setup and hold times. The SYSREF signal is internally sampled on the rising edge of the sampling clock plus 60ps.

The device includes an internal SYSREF monitoring circuitry to detect a possible SYSREF logic level metastability close to the sampling instant of SYSREF which can lead to misalignment across devices. The SYSREF monitoring circuitry provides insights into SYSREF/clock misalignment by detecting whether a SYSREF logic state transition is within -60ps to +140ps of the sampling clock rising edge. This circuitry detects and raises one of the SYSREF XOR flags corresponding to the matching SYSREF window below:

  • Window XOR1: SYSREF leading sample clock by 20 to 60ps
  • Window XOR2: SYSREF leading sample clock by 20ps to 0ps or SYSREF lagging sample clock by 0 to 20ps
  • Window XOR3: SYSREF lagging sample clock by up to 20 to 60ps
  • Window XOR4: SYSREF lagging sample clock by 60 to 100ps
  • Window XOR5: SYSREF lagging sample clock by 100 to 140ps

The SYSREF monitor registers are updated at every rising edge of SYSREF. The <SYSREF DET> register (D6) is sticky (indicating a SYSREF edge was detected) and needs to be cleared manually.

ADC3649 SYSREF Detection CircuitryFigure 8-17 SYSREF Detection Circuitry

The example in Figure 8-18 shows a misaligned SYSREF signal where the SYSREF signal arrives much later than the sampling clock falling edge. In this example, the delayed SYSREF signal transitions between the "B" and "C" flip flop which raises the XOR2 flag. The XOR flags get reported in register 0x140. In this example, Register 0x140 reads back 0x62, as shown in Table 8-3.

ADC3649 Detection of SYSREF Transition Within Capture WindowFigure 8-18 Detection of SYSREF Transition Within Capture Window
Table 8-3 SYSREF Window Register Example (0x140)
ADDRD7D6D5D4D3D2D1D0
0x1400SYSREF DETSYSREF ORSYSREF X5SYSREF X4SYSREF X3SYSREF X2SYSREF X1
01100010