SBAS659 November   2014 ADS58J89

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Handling Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter
    7. 6.7  Electrical Characteristics: 500 MSPS Output
    8. 6.8  Electrical Characteristics: Sample Clock Timing Characteristics
    9. 6.9  Electrical Characteristics: Digital Outputs
    10. 6.10 Timing Requirements
    11. 6.11 Reset Timing
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Decimation by 2 (250 MSPS Output)
      2. 7.3.2  Over-Range Indication
      3. 7.3.3  JESD204B Interface
        1. 7.3.3.1 JESD204B Initial Lane Alignment (ILA)
        2. 7.3.3.2 JESD204B Test Patterns
        3. 7.3.3.3 JESD204B Frame Assembly
      4. 7.3.4  SYSREF Clocking Schemes
      5. 7.3.5  Split-Mode Operation
      6. 7.3.6  Eye Diagram Information
      7. 7.3.7  Analog Inputs
      8. 7.3.8  Clock Inputs
      9. 7.3.9  Input Clock Divider
      10. 7.3.10 Power-Down Control
      11. 7.3.11 Device Configuration
      12. 7.3.12 JESD204B Interface Initialization Sequence
      13. 7.3.13 Device and Register Initialization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 Mode Configuration
      3. 7.4.3 Output Format
      4. 7.4.4 Burst Mode of Every Other Sample (250 MSPS Output)
      5. 7.4.5 SNR Boost (500 MSPS Output)
      6. 7.4.6 Burst Mode
        1. 7.4.6.1 Burst Mode Counters
        2. 7.4.6.2 Burst Mode
        3. 7.4.6.3 TDD Burst Mode
        4. 7.4.6.4 Trigger Input
        5. 7.4.6.5 Manual Trigger Mode
        6. 7.4.6.6 Auto Trigger Mode
        7. 7.4.6.7 TDD-Burst Mode
          1. 7.4.6.7.1 TDD Burst Mode Examples
    5. 7.5 Programming
      1. 7.5.1 Serial Register Write
      2. 7.5.2 Serial Register Readout
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
        1. 7.6.1.1  Register Address 0
        2. 7.6.1.2  Register Address 1
        3. 7.6.1.3  Register Address 2
        4. 7.6.1.4  Register Address 3
        5. 7.6.1.5  Register Address 4
        6. 7.6.1.6  Register Address 5
        7. 7.6.1.7  Register Address 6
        8. 7.6.1.8  Register Address 7
        9. 7.6.1.9  Register Address 8
        10. 7.6.1.10 Register Address 12
        11. 7.6.1.11 Register Address 13
        12. 7.6.1.12 Register Address 14
        13. 7.6.1.13 Register Address 15
        14. 7.6.1.14 Register Address 16
        15. 7.6.1.15 Register Address 19
        16. 7.6.1.16 Register Address 22
        17. 7.6.1.17 Register Address 23
        18. 7.6.1.18 Register Address 26
        19. 7.6.1.19 Register Address 29
        20. 7.6.1.20 Register Address 30
        21. 7.6.1.21 Register Address 31
        22. 7.6.1.22 Register Address 32
        23. 7.6.1.23 Register Address 33
        24. 7.6.1.24 Address: 0x24, 0x25, 0x26, 0x27
        25. 7.6.1.25 Address: 0x28, 0x29, 0x2A, 0x2B
        26. 7.6.1.26 Register Address 44
        27. 7.6.1.27 Register Address 45
        28. 7.6.1.28 Register Address 46
        29. 7.6.1.29 Register Address 47
        30. 7.6.1.30 Address: 0x32, 0x33, 0x34, 0x35
        31. 7.6.1.31 Address: 0x36, 0x37, 0x38, 0x39
        32. 7.6.1.32 Register Address 58
        33. 7.6.1.33 Register Address 59
        34. 7.6.1.34 Register Address 60
        35. 7.6.1.35 Register Address 61
        36. 7.6.1.36 Register Address 99
        37. 7.6.1.37 Register Address 100
        38. 7.6.1.38 Register Address 103
        39. 7.6.1.39 Register Address 104
        40. 7.6.1.40 Register Address 107
        41. 7.6.1.41 Register Address 108
        42. 7.6.1.42 Register Address 111
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 SNR and Clock Jitter
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 CML SerDes Transmitter Interface
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Detailed Description

7.1 Overview

The ADS58J89 is a pin-to-pin compatible, very-low power, wide bandwidth 14-bit 250 or 500 MSPS quad channel receiver and feedback IC. It supports the JESD204B serial interface with data rates up to 5.0 Gbps supporting 1 or 2 lanes per channel. The buffered analog input provides uniform input impedance across a wide frequency range while minimizing sample-and-hold glitch energy. A sampling clock divider allows more flexibility for system clock architecture design. The ADS58J89 provides excellent SFDR over a large input frequency range with very-low power consumption.

7.2 Functional Block Diagram

fbd_descrip_SBAS659.gif

7.3 Feature Description

7.3.1 Decimation by 2 (250 MSPS Output)

Each channel has a digital filter in the data path as shown in Figure 39. The filter can be programmed as a low-pass or high-pass filter and the normalized frequency response of both filters is shown in Figure 40.

dec_by_2_BAS659.gifFigure 39. 2x Decimation Filter

The decimation filter response has a 0.1-dB pass band ripple with approximately 41% pass-band bandwidth. The stop-band attenuation is approximately 40 dB.

D00C_SBAS659.gif
Figure 40. Decimation Filter Response
D00D_SBAS659.gif
Figure 41. Decimation Filter Response Passband Ripple Detail

7.3.2 Over-Range Indication

The ADS58J89 provides a fast over-range indication on the OVRA, OVRB, OVRC, and OVRD pins. The fast OVR is triggered if the input voltage exceeds the programmable over-range threshold and is output after just 6 clock cycles, enabling a quicker reaction to an over-range event. The OVR threshold can be configured using SPI register writes.

The input voltage level at which the overload is detected is referred to as the threshold and is programmable using the over-range threshold bits.

The threshold at which fast OVR is triggered is (full-scale × [the decimal value of the FAST OVR THRESH bits] / 8). After reset, the default value of the over-range threshold is set to 7 (decimal), which corresponds to a threshold of 1.12 dB below full scale (20 × log(7/8)).

Table 1. Fast Over Range Threshold Settings

OVR Setting (decimal) OVR Threshold (dBFS)
1 –18.1
2 –12.0
3 –8.5
4 –6.0
5 –4.1
6 –2.5
7 (default) –1.1

Because the fast over-range indicator is single-ended LVCMOS logic, the ADS58J89 device can be configured through the SPI register write to keep the over-range indicator asserted high for an extra one, two, or four clock cycles. This longer assertion of the signal ensures the processor can capture the over-range event.

overrange_SBAS659.gifFigure 42. Fast Over Range Output Timing

The ADS58J89 device also provides the fast over-range indication bit in the JESD204B output data stream.

fast_overrange_SBAS659.gifFigure 43. Sample Data and Status Bit Format

7.3.3 JESD204B Interface

The ADS58J89 supports device subclass 1 with a maximum output data rate of 5.0 Gbps for each serial transmitter. It allows independent JESD204B format configuration for channel A and B and channel C and D.

An external SYSREF signal is used to align all internal clock phases and the local multi-frame clock to a specific sampling clock edge. This allows synchronization of multiple devices in a system and minimizes timing and alignment uncertainty. SYNCbAB input is used to control all the JESD204B SerDes blocks for channel A and B while SYNCbCD is used to control channel C and D. If the same LMFS configuration is used for all four channels, the SYNCbAB and SYNCbCD signals can be tied together externally and driven from the same source.

Depending on the channel output data rate, the JESD204B output interface can be operated with either 1 or 2 lanes per single channel. The JESD204B setup and configuration of the frame assembly parameters are controlled via SPI interface.

The JESD204B transmitter block consists of the transport layer, the data scrambler and the link layer. The transport layer maps the channel output data into the selected JESD204B frame data format and manages if the channel output data or test patterns are being transmitted. The link layer performs the 8b/10b data encoding as well as the synchronization and initial lane alignment using the SYNCb input signal. Optionally, data from the transport layer can be scrambled.

JESD204B_int_BAS659.gifFigure 44. JESD204B Lane Assignment
JESD204B_block_BAS659.gifFigure 45. JESD204B Block

7.3.3.1 JESD204B Initial Lane Alignment (ILA)

The ILA process is started by the receiving device by deasserting the SYNCb signal. Upon detecting a logic low on the SYNCbAB input pins, the ADS58J89 device starts transmitting comma (K28.5) characters on channels A and B to establish code group synchronization. Upon detecting a logic high on the SYNCbCD input pins, the ADS58J89 device starts transmitting comma (K28.5) characters on channels C and D to establish code group synchronization.

After synchronization is completed, the receiving device asserts the SYNCb signal and the ADS58J89 starts the ILA sequence with the next local multi-frame clock boundary. The ADS58J89 device transmits 4 multi-frames each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame start and end symbols and the second multi-frame also contains the JESD204 link configuration data.

tim_JESD204B_BAS659.gifFigure 46. Initial Lane Assignment Format

7.3.3.2 JESD204B Test Patterns

There are three different test patterns available in the transport layer of the JESD204B interface. The ADS58J89 supports a RAMP, 1555/2AAA and different PRBS patterns. They can be enabled through SPI register write and are located in address 0x1D and 0x32/33.

7.3.3.3 JESD204B Frame Assembly

The JESD204B standard defines the following parameters:

  • L = number of lanes per link
  • M = number of converters for device
  • F = number of octets per frame clock period
  • S = number of samples per frame
  • HD = high density mode

The ADS58J89 supports independent configuration of the JESD204B format for channel A and B and channel C and D. Table 2 lists the available JESD204B formats and valid ranges for the ADS58J89. The ranges are limited by the SerDes line rate and the maximum channel sample frequency.

Table 2. Permissible LMFS Settings

L M F S HD Max Channel Output Rate (MSPS) Max ƒSerDes (Gsps)
8 4 1 1 1 500 5.0
4 4 2 1 0 250 5.0

The detailed frame assembly is shown in Table 3.

Table 3. LMFS Data Formats

LMFS = 8411 LMFS = 4421
Lane DA0 A0[13:6] A1[13:6] A2[13:6] A3[13:6] A0[13:6] A0[5:0], 00 A1[13:6] A1[5:0], 00 A2[13:6] A2[5:0], 00
Lane DA1 A0[5:0], 00 A1[5:0], 00 A2[5:0], 00 A3[5:0], 00
Lane DB0 B0[13:6] B1[13:6] B2[13:6] B3[13:6] B0[13:6] B0[5:0], 00 B1[13:6] B1[5:0], 00 B2[13:6] B2[5:0], 00
Lane DB1 B0[5:0], 00 B1[5:0], 00 B2[5:0], 00 B3[5:0], 00
Lane DC0 C0[13:6] C1[13:6] C2[13:6] C3[13:6] C0[13:6] C0[5:0], 00 C1[13:6] C1[5:0], 00 C2[13:6] C2[5:0], 00
Lane DC1 C0[5:0], 00 C1[5:0], 00 C2[5:0], 00 C3[5:0], 00
Lane DD0 D0[13:6] D1[13:6] D2[13:6] D3[13:6] D0[13:6] D0[5:0], 00 D1[13:6] D1[5:0], 00 D2[13:6] D2[5:0], 00
Lane DD1 D0[5:0], 00 D1[5:0], 00 D2[5:0], 00 D3[5:0], 00

7.3.4 SYSREF Clocking Schemes

Periodic: The SYSREF signal is always on. This mode is supported, but not recommended as the continuous SYSREF signal appears like an additional clock input, which can cause clock mixing spurs in the channel output spectrum.

Gapped-Periodic (recommended): A periodic SYSREF signal is presented to the ADS58J89 SYSREF inputs for a very short period of time. This configuration requires a DC-coupled SYSREF connection for proper operation. Most of the time the SYSREF signal is in a logic-low state, and thus cannot cause any glitches and spurs in the channel output spectrum.

Pulse/One Shot (recommended): A single SYSREF reset pulse is used to synchronize the ADS58J89. The ADS58J89 device requires a minimum of 3 SYSREF pulses to complete the synchronization phase. The SYSREF signal is in a logic-low state most of the time, and thus cannot cause any glitches and spurs in the channel output spectrum. Special attention should be given to ensure the single pulse meets required the SYSREF input setup and hold time.

7.3.5 Split-Mode Operation

The ADS58J89 provides several different options to interface it to the digital processor or processors. If the ADS58J89 device is operated in split sampling rate (2 channels at 500-MSPS output rate and 2 channels at 250-MSPS output rate), then it requires dual SYSREF (SYSREFAB and SYSREFCD) and dual SYNC (SYNCbAB and SYNCbCD).

Subclass 1 – Deterministic Latency: The device clock and synchronous SYSREF signal are provided by the timing unit to the ADS58J89 and the processor. The processor controls the SYNCb input signals for the JESD204B state machine for all four channels. In case the ADS58J89 is connected to two different processors, the differential SYNCb inputs of the ADS58J89 can be configured to two single-ended inputs where each pin controls the JESD204B state machine of the two corresponding channels.

app_detLaten_BAS659.gifFigure 47. Four Channel and Dual Two Channel Usage

Split Mode Operation: If the ADS58J89 device is operated with 2-channel output at 500 MSPS and 2-channel output at 250 MSPS, then dual SYSREF (SYSREFAB for channel A and B, SYSREFCD for channel C and D) as well as dual SYNC (SYNCbAB for channel A and B, SYNCbCD for channel C and D) is required to ensure normal operation because the JESD204B link configuration is different for the two channel pairs.

app_splitMode_BAS659.gifFigure 48. Dual SYSREF Usage

7.3.6 Eye Diagram Information

Figure 49 and Figure 50 is the measured eye diagram at 2.5 and 5Gbps output data rate, respectively. These are overlaid with the JESD204B LV-OIF-6G-SR specification.

JESD_output_2dot5Gb_BAS659.gifFigure 49. 2.5 Gbps Eye Diagram
JESD_output_5Gb_BAS659.gifFigure 50. 5.0 Gbps Eye Diagram

7.3.7 Analog Inputs

The ADS58J89 analog signal inputs are designed to be driven differentially. The analog input pins have internal analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high-impedance input across a very-wide frequency range to the external driving source, which enables great flexibility in the external analog filter design as well as excellent 50-Ω matching for RF applications. The buffer also helps isolate the external driving circuit from the internal switching currents of the sampling circuit, which results in a more constant SFDR performance across input frequencies.

The common-mode voltage of the signal inputs is internally biased to 2 V using 500-Ω resistors, which allows for AC coupling of the input drive network. Each input pin (INP, INM) must swing symmetrically between (VCM + 0.3125 V) and (VCM – 0.3125 V), resulting in a 1.25-Vpp (default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to 900 MHz.

D00E_SBAS659.gifFigure 51. Normalized Input Bandwidth
an_inputs_SBAS659.gifFigure 52. Equivalent Analog Input Circuit

7.3.8 Clock Inputs

The ADS58J89 clock input can be driven differentially with a sine wave or LVPECL source with little or no difference in performance. The common mode voltage of the clock input is set to 0.9 V using internal 2-kΩ resistors. This allows for AC coupling of the clock inputs. The termination resistors should be placed as close as possible to the clock inputs in order to minimize signal reflections and jitter degradation.

dif_clock_driv_SBAS659.gifFigure 53. Equivalent Clock Input Circuit

7.3.9 Input Clock Divider

The ADS58J89 is equipped with two internal dividers on the clock input – one on channel AB and one on channel CD. The clock divider allows operation with a faster input clock simplifying the system clock distribution design. The clock dividers can be bypassed (/1) for operation with a 500-MHz clock while /2 option supports a maximum input clock of 1 GHz and the /4 option a maximum input clock frequency of 2 GHz. Different divider options can be selected for channel AB and channel CD clock output. By default the divider output of channel AB block is routed to all 4 channels but the configuration can be customized with different SPI register settings to use either the channel AB or CD divider blocks for any two channels.

input_clk_div_BAS659.gifFigure 54. Input Clock Divider

7.3.10 Power-Down Control

The power down functions of the ADS58J89 can be controlled either through the parallel control pin (ENABLE) or through a SPI register setting. Power-down modes for the different channels as well as for the JESD204B interface are supported.

The ADS58J89 supports the following power-down modes. The analog sleep mode configurations are in register 0x05/06 and the JESD204b sleep mode configurations are in register 0x1E and 0x1F.

Table 4. Low-Power Mode Power Consumption and Wake-Up Times

Configuration Power Consumption Wake-Up Time
Global power down 24 mW Needs JESD resynch
Standby 31 mW Needs JESD resynch
Deep sleep 791 mW 1.4 ms
Light sleep 1.68 W 8 µs

Control power-down function through ENABLE pin:

  1. Configure power-down mode in register 0x05 and 0x1E
  2. Normal operation: ENABLE pin high
  3. Power-down mode: ENABLE pin low

Control power-down function through SPI (ENABLE pin always high):

  1. Assign power-down mode in register 0x06 and 0x1F
  2. Normal operation: 0x06 and 0x1F are 0xFFFF
  3. Power-down mode: configure power down mode in register 0x06 and 0x1F

7.3.11 Device Configuration

The serial interface (SIF) included in the ADS58J89 is a simple 3- or 4-pin interface. In normal mode, 3 pins are used to communicate with the device. There is an enable (SDENb), a clock (SCLK), and a bidirectional IO port (SDATA). If the user would like to use the 4-pin interface, one write must be implemented in the 3-pin mode to enable 4-pin communications. In this mode, the SDOUT pin becomes the dedicated output. The serial interface has an 8-bit address word and a 16-bit data word. The first rising edge of SCLK after SDENb goes low will latch the read or write bit. If a high is registered, then a read is requested, if it is low, then a write is requested. SDENb must be brought high again before another transfer can be requested.

7.3.12 JESD204B Interface Initialization Sequence

After power-up, the internal JESD204B digital block must be initialized with the following sequence of steps:

  1. Set JESD RESET AB/CD and JESD INIT AB/CD to 0 (address 0x0D, value 0x0000)
  2. Set JESD INIT AB/CD to 1 (0x0D, 0x0202)
  3. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)
  4. Configure all other JESD register and clock settings. If those settings change later on, this initialization sequence must be repeated.
  5. Set JESD RESET AB/CD to 0 (0x0D, 0x0202)
  6. Set JESD RESET AB/CD to 1 (0x0D, 0x0303)
  7. Wait for two SYSREF pulses
  8. Set JESD INIT AB/CD to 0 (0x0D, 0x0101)

7.3.13 Device and Register Initialization

After power-up, the internal registers must be initialized to their default values through a hardware reset by applying a low pulse on the SRESETb pin (of width greater than 10 ns), as shown in Figure 1. If required later during operation, the serial interface registers can be cleared by applying:

  • Another hardware reset using the SRESETb pin
  • A software reset (bit D0 in register 0x00). This setting resets the internal registers to the default values and then self-resets the RESET bit (D0) back to 0. In this case, the RESET pin is kept high.

7.4 Device Functional Modes

7.4.1 Operating Modes

Table 5 details the five different operating modes. A pair of channels (channel A and B and channel C and D) can be configured in the same operating mode.

Table 5. Operating Modes Information

Channel Sampling Rate (MSPS) Digital Feature Output Data Rate (MSPS) Output Resolution Output SerDes Rate (GSPS) Number of Lanes per Channel
500 Decimation by 2 250 14 bit 5.0 1
Burst mode of every other sample 250 11 to 14 bit 5.0 1
500 SNR boost (150-MHz BW) 500 9 bit 5.0 2
Burst mode 500 9 to 14 bit 5.0 2
TDD-burst mode 500 9 to 14 bit 5.0 2

7.4.2 Mode Configuration

Table 6 shows examples for different mode configurations for channel A/B and channel C/D regarding input options for SYSREF as well as the trigger for the different burst mode options. Each channel pair (A/B and C/D) can support each mode for 250-MSPS and 500-MSPS output.

Table 6. SYSREF and Trigger Options by Operating Mode

Channel Output Rate Mode SYSREF Input Trigger Input
2 500 MSPS SNR boost SYSREFAB
2 500 MSPS SNR boost
2 500 MSPS TDD burst mode SYSREFAB SYSREFP/M
2 500 MSPS TDD burst mode OVRA/C
2 500 MSPS TDD burst mode SYSREFAB SYSREFCDP/M
2 500 MSPS Burst mode OVRA/C
2 500 MSPS SNR boost SYSREFAB SYSREFCDP/M
2 500 MSPS Burst mode OVRA/C
2 500 MSPS SNR boost SYSREFAB OVRA/C
2 250 MSPS Burst mode of every other sample SYSREFCD
2 500 MSPS Burst mode SYSREFAB OVRA/C
2 250 MSPS Decimation by 2 SYSREFCD
2 250 MSPS Decimation by 2 SYSREFAB SYSREFCDP/M
2 250 MSPS Burst mode of every other sample OVRA/C
2 250 MSPS Decimation by 2 SYSREFAB
2 250 MSPS Decimation by 2

7.4.3 Output Format

Table 7 provides detailed information on how the MSB or LSB get aligned for the different output data rates and resolution in the different operating modes.

Table 7. Output Data Formats

Function Output Rate Mode Resolution Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RX 250 MSPS Decimate by 2 14 bit D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR 0
FB 250 MSPS Burst Mode 14 bit D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR HRES
RX 500 MSPS SNR Boost 9 bit D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 OVR 0
FB 500 MSPS Burst Mode 11 bit D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 OVR HRES
12 bit D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 OVR HRES
14 bit D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 OVR HRES

7.4.4 Burst Mode of Every Other Sample (250 MSPS Output)

In this mode, the channel is sampling at full sampling rate but the output only transmits every other sample with burst mode. During burst mode operation the output is alternated between low resolution 11-bit and high resolution 12- or 14-bit output. The burst mode operation can be configured to auto or manual trigger (see Burst Mode).

burst_250_SBAS659.gifFigure 55. Timing Diagram Burst Mode of Every Other Sample

7.4.5 SNR Boost (500 MSPS Output)

In this mode, the channel output data is truncated to 9-bit resolution and the quantization noise is shaped using TI SNR Boost 3G technology. The SNR Boost passband bandwidth maximum is 150 MHz at 500 MSPS centered at the mid-point of the Nyquist zone.

D00B_SBAS659.gifFigure 56. SNR Boost Noise Shape Response

7.4.6 Burst Mode

The ADS58J89 supports TI’s next generation burst mode technology which can be used for the DPD feedback path as well for the receive path (TDD burst mode) in TDD applications. In receive mode, the TDD burst mode is used to support very wide band and high resolution or duty cycle operation. Both modes can also be used simultaneously where two channels operate in burst mode and two channels in TDD burst mode.

In burst mode operation, the ADS58J89 alternatively transmits low resolution (11 bit for 250 MSPS operation and 9 bit for 500 MSPS operation, LSBs are set to 0) and high resolution (11-, 12-, or 14-bit) output data and can be configured via SPI register writes. The number of low and high resolution samples is configured through programmable counters.

7.4.6.1 Burst Mode Counters

The ADS58J89 provides eight independent counters each for channel A and B and channel C and D for burst mode operation. The TDD burst mode employs all eight counters (four for the low resolution samples and four for the high resolution samples) while the normal burst mode uses only H1 and L1. Each count corresponds to four samples and each counter can be programmed through a 22-bit register entry (1 to 4194303).

The counter values can be updated at any time, but the update does not go into effect until the start of the next burst mode cycle with low resolution output data (L1). After programming the counters, the ADS58J89 calculates the corresponding duty cycle for the selected high resolution output. If the duty cycle violates the limits, the digital outputs are limited to low resolution output.

Equation 1. eq_duty_cyc_SBAS659.gif

The duty cycle limits per selected high resolution output is shown in Table 8.

Table 8. Burst Mode Maximum Allowed Duty Cycle

Maximum Allowed Duty Cycle
(High : Low Resolution Output)
500 MSPS 250 MSPS
14 bit 1/3 1/1
12 bit 2/3 4/1
11 bit 3/2

7.4.6.2 Burst Mode

The number of high and low resolution samples is H1 × 22 and L1 × 22. The maximum number of low resolution samples is 22 × 222 = 224 while the maximum number of high resolution samples depends on the duty cycle.

7.4.6.3 TDD Burst Mode

The number of high and low resolution samples per cycle is (H1 + H2 + H3 + H4) × 22 and (L1 + L2 + L3 + L4) × 22.

In TDD burst mode, the output data gets transmitted in the following order:
L1, H1, L2, H2, L3, H3, L4, H4, L1, H1, and so forth

7.4.6.4 Trigger Input

The burst mode can be operated in auto trigger or manual trigger mode while the TDD burst mode supports only the manual trigger mode.

In manual trigger mode, the trigger input releases the first high resolution data (H1) burst after the low resolution data counter L1 has timed out. The OVRB outputs can be configured via SPI (address 0x6F) as output flags TRDY for channel A and B. The OVRD outputs can be configured via SPI (address 0x6F) as output flags TRDY for channel C and D. Both these configurations indicate that counter L1 timed out and the high resolution output data burst can be triggered.

The ADS58J89 provides a lot of flexibility for the configuration of the trigger input. In default operation, the single-ended input pin TRIGGERAB controls all four channels. Alternatively, the trigger input can be changed to the OVRA pin as single-ended input or as a differential input with TRIGGERAB as positive and TRIGGERCD as negative input (differential input requires external 100-Ω termination).

For simultaneous receive and DPD feedback applications, it may be more useful to split the control where the TRIGGERAB or OVRA pin controls channel A and B and the TRIGGERCD or OVRC pin controls channel C and D. In addition, the OVRB and OVRD pins can be configured to output the TRDY flag for channel A and B and channel C and D, respectively.

The trigger input for channel A/B and channel C/D can each be selected with 2 register bits (address 0x2C and 0x3A) as shown in Table 9.

Table 9. Burst Mode Trigger Sources

Register Setting Trigger Source
00 TRIGGERAB (= pin SYSREFCDP)
01 TRIGGERCD (= pin SYSREFCDM)
10 OVRA (for channel A/B)
OVRC (for channel C/D)
11 TRIGGERAB/CD (as differential LVDS input, single trigger input for all 4 channels)

7.4.6.5 Manual Trigger Mode

Upon enabling manual trigger mode, the ADS58J89 starts transmission of low resolution data. As soon as the L1 counter is finished, the manual trigger is unlocked and the high resolution output H1 or burst mode sequence of H1, L2, H2, L3, H3, L4, H4, L1 can be triggered. After the low resolution counter L1 is finished, the next high resolution output or burst mode sequence can be triggered again. The HRES flag is embedded in the JESD204B output data stream. The counter values can be updated until a new burst mode cycles starts with transmission of low resolution samples.

See Figure 57 for an example of normal burst mode with manual trigger.

norm_burst_manu_SBAS659.gifFigure 57. Burst Mode Duty Cycle Timing

See Figure 58 for an example of TDD burst mode with manual trigger:

tdd_burst_manu_SBAS659.gifFigure 58. TDD Burst Mode Duty Cycle Timing

7.4.6.6 Auto Trigger Mode

This mode is primarily intended for the DPD observation path. Upon enabling auto trigger mode, the ADS58J89 starts transmission of low resolution data. As soon as the L1 counter is finished, the ADS58J89 immediately begins transmitting the high resolution output H1. The HRES flag can also be embedded in the JESD204B output data stream. The counter values can be updated until a new burst mode cycles starts with transmission of low resolution samples. Any input on the trigger input pins is ignored.

See Figure 59 for an example of normal burst mode with automatic trigger:

norm_burst_auto_SBAS659.gifFigure 59. Auto-Trigger Mode Duty Cycle Timing

7.4.6.7 TDD-Burst Mode

This mode is intended for the receive path in TDD LTE receivers. The individual counters for high and low resolution output data can be programmed so that the high resolution samples line up with receive (uplink) frames and the low resolution samples line up with transmit (downlink) and setup frames where no data is present in the receive path.

Table 10. TDD Burst Mode Duty Cycle

Option Number of Setup Frames Number of Downlink Frames Number of Uplink Frames Duty Cycle High Resolution Output (500 MSPS)
1 1 8 1 1:9 (0.11) 14 bit
2 7 2 2:8 (0.25) 14 bit
3 6 3 3:7 (0.43) 12 bit
4 5 4 4:6 (0.67) 11/12 bit
5 1 to 4 5 to 8 (1+) 11 bit
6 2 6 2 2:8 (0.25) 14 bit
7 5 3 3:7 (0.43) 12 bit
8 4 4 4:6 (0.67) 11/12 bit
9 1 to 3 5 to 7 >1 11 bit

7.4.6.7.1 TDD Burst Mode Examples

Following are two examples to illustrate the intention for the TDD burst mode. The TDD frame has 10 equal size sub frames. For the downlink-uplink (DL-UL) configuration number 2 for example, the high and low resolution counters can be set for a given channel sampling rate to match the downlink-uplink profile as shown in Figure 60. The manual trigger is used to initiate the high resolution output data, which maintains synchronization. The counter L1 covers the low resolution data across two consecutive TDD frames and most of setup frame.

For configuration number 2, a duty cycle of approximately 2 / 8 can be achieved; with a sampling rate of 500 MSPS, the high resolution output of 14 bit can be used.

tdd_exs_config2_SBAS659.gifFigure 60. TDD Burst Mode Example 1

For configuration number 3, a duty cycle of approximately 3 / 7 can be achieved and only two counters have to be programmed. With a sampling rate of 500 MSPS, a high resolution output of 12 bit can be used.

tdd_exs_config3_SBAS659.gifFigure 61. TDD Burst Mode Example 2

7.5 Programming

7.5.1 Serial Register Write

The internal register of the ADS58J89 can be programmed following these steps:

  1. Drive SDENb pin low.
  2. Set the R/W bit to ‘0’ (bit A7 of the 8 bit address).
  3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be written.
  4. Write 16-bit data which is latched on the rising edge of SCLK.

Table 11. Serial Register Read or Write Timing(1)

PARAMETER MIN TYP MAX UNIT
ƒSCLK SCLK frequency (equal to 1 / tSCLK) >DC 10 MHz
tSLOADS SDENb to SCLK setup time 50 ns
tSLOADH SCLK to SDENb hold time 50 ns
tDSU SDATA setup time 50 ns
tDH SDATA hold time 50 ns
(1) Typical values at 25°C; minimum and maximum values across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD33 = 3.3 V; AVDD18, AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, unless otherwise noted.
tim_SerialW_BAS659.gifFigure 62. Serial Register Write Timing Diagram

7.5.2 Serial Register Readout

The device includes a mode where the contents of the internal registers can be read back using the SDOUT and SDATA pins. This read-back mode may be useful as a diagnostic check to verify the serial interface communication between the external controller and the channel.

  1. Drive SDENb pin low.
  2. Set the RW bit (A7) to 1. This setting disables any further writes to the registers.
  3. Initiate a serial interface cycle specifying the address of the register (A6 to A0) whose content has to be read.
  4. The device outputs the contents (D15 to D0) of the selected register on the SDOUT/SDATA pin.
  5. The external controller can latch the contents at the SCLK rising edge.
  6. To enable register writes, reset the RW register bit to 0.
tim_SerialR_BAS659.gifFigure 63. Serial Register Read Timing Diagram

7.6 Register Maps

Register Address Register Data
A7 to A0 in hex D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 3/4 WIRE FORMAT DEC EN AB HP/LP AB 0 DEC EN CD HP/LP CD 0 SNRB EN AB SNRB EN CD 0 0 0 0 0 RESET
1 MODE 1 0 1 0 FOVR THRESH AB FOVR LENGTH AB FOVR THRESH CD FOVR LENGTH CD 1 0
2 0 1 BM RES DISCARD AB DISCARD CD 0 0 0 0 0 0 0 0 0 0
3 0 CLK SEL CD CLK DIV CD 0 CLK PHASE SELECT CD SYSREF SEL CD CLK SEL AB CLK DIV AB 0 CLK PHASE SELECT AB
4 OVRA OUT EN OVRB OUT EN OVRC OUT EN OVRD OUT EN SYSREF AB DELAY SYSREF CD DELAY 0 0 0 0 SYNCb AB EN SYNCb CD EN 1 1
5 ANALOG SLEEP MODES – ENABLE PIN
6 ANALOG SLEEP MODES – SPI SYSREFCD EN
7 0 0 0 0 0 0 CLK SW AB 1 0 1 0 0 0 1 0 0
8 0 0 0 0 0 0 CLK SW CD 1 0 1 0 0 0 1 0 0
C 0 0 1 1 0 0 0 1 1 1 SYSREF JESD MODE CD SYSREF JESD MODE AB
D 0 0 0 0 0 0 JESD INIT CD JESD RESET CD 0 0 0 0 0 0 JESD INIT AB JESD RESET AB
E 0 0 0 0 0 0 0 0 TX LANE EN CD TX LANE EN AB
F 0 0 0 0 0 0 CTRL F AB 0 0 0 0 0 0 CTRL M AB
10 0 0 0 0 0 0 CTRL K AB 0 0 0 CTRL L AB
13 0 0 0 0 0 0 0 0 0 INV SYNCb AB HD AB SCR EN AB 0 0 0 0
16 0 0 0 0 0 0 CTRL F CD 0 0 0 0 0 0 CTRL M CD
17 0 0 0 0 0 0 CTRL K CD 0 0 0 CTRL L CD
1A 0 0 0 0 0 0 0 0 0 INV SYNCb CD HD CD SCR EN CD 0 0 0 0
1D 0 0 0 0 0 0 0 0 0 TEST PATTERN EN CD TEST PATTERN EN AB 0 TEST PATTERN 0 0 0
1E 0 0 0 0 0 0 JESD SLEEP MODES – ENABLE PIN
1F 1 1 1 1 1 1 JESD SLEEP MODES – SPI
20 JESD LANE POLARITY INVERT PRBS EN
21 0 PRBS SEL 0 0 0 0 0 0 0 0 0 0 VREF SEL

Table 12.

Register Address Register Data
A7 to A0 in hex D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
24 TDD BURST MODE COUNTER L1 [15:0] AB
25 TDD BURST MODE COUNTER L2 [15:0] AB
26 TDD BURST MODE COUNTER L3 [15:0] AB
27 TDD BURST MODE COUNTER L4 [15:0] AB
28 TDD BURST MODE COUNTER H1 [15:0] AB
29 TDD BURST MODE COUNTER H2 [15:0] AB
2A TDD BURST MODE COUNTER H3 [15:0] AB
2B TDD BURST MODE COUNTER H4 [15:0] AB
2C BM TRIG AB TDD BURST MODE COUNTER L2 [21:16] AB 0 0 TDD BURST MODE COUNTER L1 [21:16] AB
2D 0 0 TDD BURST MODE COUNTER L4 [21:16] AB 0 0 TDD BURST MODE COUNTER L3 [21:16] AB
2E 0 0 TDD BURST MODE COUNTER H2 [21:16] AB 0 0 TDD BURST MODE COUNTER H1 [21:16] AB
2F AUTO TRIG AB TDD EN AB TDD BURST MODE COUNTER H4 [21:16] AB 0 0 TDD BURST MODE COUNTER H3 [21:16] AB
32 TDD BURST MODE COUNTER L1 [15:0] CD
33 TDD BURST MODE COUNTER L2 [15:0] CD
34 TDD BURST MODE COUNTER L3 [15:0] CD
35 TDD BURST MODE COUNTER L4 [15:0] CD
36 TDD BURST MODE COUNTER H1 [15:0] CD
37 TDD BURST MODE COUNTER H2 [15:0] CD
38 TDD BURST MODE COUNTER H3 [15:0] CD
39 TDD BURST MODE COUNTER H4 [15:0] CD
3A BM TRIG CD TDD BURST MODE COUNTER L2 [21:16] CD 0 0 TDD BURST MODE COUNTER L1 [21:16] CD
3B 0 0 TDD BURST MODE COUNTER L4 [21:16] CD 0 0 TDD BURST MODE COUNTER L3 [21:16] CD
3C 0 0 TDD BURST MODE COUNTER H2 [21:16] CD 0 0 TDD BURST MODE COUNTER H1 [21:16] CD
3D AUTO TRIG CD TDD EN CD TDD BURST MODE COUNTER H4 [21:16] CD 0 0 TDD BURST MODE COUNTER H3 [21:16] CD
63 0 0 0 0 0 0 0 TEMP SENSOR
64 PRE EMP SEL AB PRE EMP EN AB DCC EN AB 0 0 0 0
67 OUTPUT CURRENT CONTROL AB
68 PRE EMP SEL CD PRE EMP EN CD DCC EN CD 0 0 0 0
6B OUTPUT CURRENT CONTROL CD
6C 0 0 0 0 0 0 0 0 0 0 TDD RATIO CD TDD RATIO AB BM RATIO CD BM RATIO AB JESD PLL CD JESD PLL AB
6F 0 0 0 0 0 0 0 0 0 TRDY EN AB 0 0 0 0 0 TRDY EN CD

7.6.1 Register Descriptions

7.6.1.1 Register Address 0

Figure 64. Register Address 0, Default 0x0000, Hex = 0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
3/4 WIRE FORMAT DEC EN AB HP/LP AB 0 DEC EN CD HP/LP CD 0 SNRB EN AB SNRB EN CD 0 0 0 0 0 RESET
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Register Address 0 Field Descriptions

Bit Field Type Reset Description
D15 3/4 WIRE Enables 4-bit serial interface when set
0 = 3-wire SPI (SDATA is bidirectional)
1 = 4-wire SPI (SDOUT is data output)
D14 FORMAT Selects digital output format
0 = Output is 2s complement
1 = Offset binary
D13 DEC EN AB Enables decimation filter for channel AB
0 = Normal operation
1 = Decimation filter enabled
D12 HP/LP AB Determines high-pass or low-pass configuration of decimation filter for channel AB
0 = Low pass
1 = High pass
D10 DEC EN CD Enables decimation filter for channel CD
0 = Normal operation
1 = Decimation filter enabled
D9 HP/LP CD Determines high-pass or low-pass configuration of decimation filter for channel CD
0 = Low pass
1 = High pass
D7 SNRB EN AB Enables SNR boost for channel AB
0 = Normal operation
1 = SNR boost enabled
D6 SNRB EN CD Enables SNR boost for channel CD
0 = Normal operation
1 = SNR boost enabled
D0 RESET Software reset, self clears to 0
0 = Normal operation
1 = Execute software reset

7.6.1.2 Register Address 1

Figure 65. Register Address 1, Default 0xAF7A, Hex = 1
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MODE 1 0 1 0 FOVR THRESH AB FOVR LENGTH AB FOVR THRESH CD FOVR LENGTH CD 1 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. Register Address 1 Field Descriptions

Bit Field Type Reset Description
D15 MODE 1 Set bit D15 to 0 for optimum performance
D13 Reads back 1
D11:D9 FOVR THRESH AB Sets fast OVR thresholds for channel A and B
The fast over-range detection is triggered 6 output clock cycles after the overload condition occurs. The threshold at which the OVR is triggered is:
Input full scale × [decimal value of <over-range threshold>] / 8.
After power-up or reset, the default value is 7 (decimal), which corresponds to an OVR threshold of 1.16-dB below full scale (20 × log(7/8)).
D00F_SBAS659.gifFigure 66. OVR Detection Threshold
D8:D7 FOVR LENGTH AB Determines minimum pulse length for FOVR output
00 = 1 clock cycle
01 = 2 clock cycles
10 = 4 clock cycles
11 = 8 clock cycles
D6:D4 FOVR THRESH CD Sets fast OVR thresholds for channel C and D See description for channel A and B
D3:D2 FOVR LENGTH CD Determines minimum pulse length for FOVR output
00 = 1 clock cycle
01 = 2 clock cycles
10 = 4 clock cycles
11 = 8 clock cycles
D1 Reads back 1

7.6.1.3 Register Address 2

Figure 67. Register Address 2, Default: 0x4000, Hex = 2
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 1 BM RES DISCARD AB DISCARD CD 0 0 0 0 0 0 0 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 15. Register Address 2 Field Descriptions

Bit Field Type Reset Description
D14 Reads back 1
D13:D12 BM RES Sets high resolution output for burst mode and TDD burst mode
00 = 14-bit high resolution output
01 = 12-bit high resolution output
10 = 11-bit high resolution output
11 = 9-bit high resolution output (in 500-MSPS operation, burst mode is disabled)
D11 DISCARD AB Outputs every other sample with 11-bit resolution for channel A and B. Burst mode is used if output resolution is set to 12 or 14 bit (bit D13 to D12).
0 = Normal operation
1 = Discard mode enabled
D10 DISCARD CD Outputs every other sample with 11-bit resolution for channel C and D. Burst mode is used if output resolution is set to 12 or 14 bit (bit D13 to D12).
0 = Normal operation
1 = Discard mode enabled

7.6.1.4 Register Address 3

Figure 68. Register Address 3, Default: 0x4040, Hex = 3
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 CLK SEL CD CLK DIV CD 0 CLK PHASE SELECT CD SYSREF SEL CD CLK SEL AB CLK DIV AB 0 CLK PHASE SELECT AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Register Address 3 Field Descriptions

Bit Field Type Reset Description
D14 CLK SEL CD Clock source selection for channel C and D
0 = Channel CD clock output divider
1 = Channel AB clock output divider (default)
D13:D12 CLK DIV CD Channel CD clock divider setting
00 = Clock input is up to 500 MHz. Input clock is not divided (default)
01 = /2
10 = /4
11 = Not used
D10:D8 CLK PHASE SELECT CD Selects phase of channel divided clock, but depends on clock divider setting. When clock CD divider is set to:
/1 = 2 phases are available (0º or 180º)
/2 = 4 phases are available (0º, 90º, 180º or 270º)
/4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º or 315º)
When switching clock phases, register 0x08, D9 must be enabled first and then disabled after the switch to ensure glitch-free operation.
D7 SYSREF SEL CD SYSREF Input selection for channel C and D
0 = Use SYSREFAB inputs (default)
1 = Use SYSREFCD inputs
D6 CLK SEL AB Clock source selection for channel A and B
0 = Channel CD clock output divider
1 = Channel AB clock output divider (default)
D5:D4 CLK DIV AB Channel AB clock divider setting
00 = Clock input is up to 500 MHz. Input clock is not divided (default)
01 = /2
10 = /4
11 = Not used
D2:D0 CLK PHASE SELECT AB Selects phase of channel AB divided clock, but depends on clock divider setting. When clock divider is set to:
/1 = 2 phases are available (0º or 180º)
/2 = 4 phases are available (0º, 90º, 180º or 270º)
/4 = 8 phases are available (0º, 45º, 90º, 135º, 180º, 225º, 270º or 315º)
When switching clock phases, register 0x07, D9 must be enabled first and then disabled after the switch to ensure glitch-free operation.

7.6.1.5 Register Address 4

Figure 69. Register Address 4, Default: 0x000F, Hex = 4
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
OVRA OUT EN OVRB OUT EN OVRC OUT EN OVRD OUT EN SYSREF AB DELAY SYSREF CD DELAY 0 0 0 0 SYNCb AB EN SYNCb CD EN 1 1
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. Register Address 4 Field Descriptions

Bit Field Type Reset Description
D15 OVRA OUT EN OVRA pin output enable
0 = OVRA is an input for burst mode trigger (see register 0x2C)
1 = OVRA is an output
D14 OVRB OUT EN OVRB pin output enable
0 = Not used (default)
1 = OVRB is an output
D13 OVRC OUT EN OVRC pin output enable
0 = OVRC is an input for burst mode trigger (see register 0x3A)
1 = OVRC is an output
D12 OVRD OUT EN OVRD pin output enable
0 = Not used (default)
1 = OVRD is an output
D11:D10 SYSREF AB DELAY Programmable input delay on SYSREFAB input
00 = 0-ps delay (default)
01 = 200-ps delay
10 = 100-ps delay
11 = 300-ps delay
D9:D8 SYSREF CD DELAY Programmable input delay on SYSREFCD input
00 = 0-ps delay (default)
01 = 200-ps delay
10 = 100-ps delay
11 = 300-ps delay
D3 SYNCb AB EN SYNCbAB input buffer enable
0 = Input buffer disabled
1 = Input buffer enabled (default)
D2 SYNCb CD EN SYNCbCD input buffer enable
0 = Input buffer disabled
1 = Input buffer enabled (default)
D1 Reads back 1
D0 Reads back 1

7.6.1.6 Register Address 5

Figure 70. Register Address 5, Default: 0x0000, Hex = 5
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
ANALOG SLEEP MODES – ENABLE pin
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. Register Address 5 Field Descriptions

Bit Field Type Reset Description
D15:D0 ANALOG SLEEP MODES – ENABLE pin Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin. This assumes address 0x06 is in default configuration.
D13 Light sleep channel A
D11 Light sleep channel B
D9 Light sleep channel C
D7 Light sleep channel D
D6 Temperature sensor
D4 Clock buffer
D3 Clock divider channel AB
D2 Clock divider channel CD
D1 Buffer SYSREFAB
D0 Buffer SYSREFCD

Table 19. Configurations When ENABLE Pin is Low

Description
0000 0000 0000 0000 Global power down
1000 0000 0000 0000 Standby
1000 0000 0001 1111 Deep sleep
1010 1010 1001 1111 Light sleep (if unused, clock divider CD and SYSREFCD can be set to 0 also)

7.6.1.7 Register Address 6

Figure 71. Register Address 6, Default: 0xFFFF, Hex = 6
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
ANALOG SLEEP MODES – SPI SYSREFCD EN
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Register Address 6 Field Descriptions

Bit Field Type Reset Description
D15:D1 ANALOG SLEEP MODES – SPI Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However, register 0x05 has higher priority. For example, if D13 (deep sleep channel A) in 0x05 is enabled, it cannot be powered down with the SPI.
D13 Light sleep channel A
D11 Light sleep channel B
D9 Light sleep channel C
D7 Light sleep channel D
D6 Temperature sensor
D4 Clock buffer
D3 Clock divider channel AB
D2 Clock divider channel CD
D1 Buffer SYSREFAB
D0 SYSREFCD EN Enables SYSREFCD input for dual SYSREF operation
0 = TRIGGER input for burst mode (differential or single ended, see address 0x2C/3A)
1 = SYSREF input for channel C/D (default)

Table 21. Configurations When ENABLE Pin is High

Description
0000 0000 0000 000 Global power down
1000 0000 0000 000 Standby
1000 0000 0001 111 Deep sleep
1010 1010 1001 111 Light sleep
1111 1111 1111 111 Normal operation

Control power down function through ENABLE pin:

  1. Configure power-down mode in register 0x05
  2. Normal operation: ENABLE pin high
  3. Power-down mode: ENABLE pin low

Control power down function through SPI (ENABLE pin always high):

  1. Assign power-down mode in register 0x06
  2. Normal operation 0x06 is 0xFFFF
  3. Power-down mode: configure power down mode in register 0x06

7.6.1.8 Register Address 7

Figure 72. Register Address 7, Default: 0x0124, Hex = 7
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CLK SW AB 1 0 1 0 0 0 1 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Register Address 7 Field Descriptions

Bit Field Type Reset Description
D9 CLK SW AB User should set this bit to 1 when changing the clock phase of the clock divider AB. After the change is complete user needs to write this bit back to 0.
D8 Reads back 1
D6 Reads back 1
D2 Reads back 1

7.6.1.9 Register Address 8

Figure 73. Register Address 8, Default: 0x0124, Hex = 8
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CLK SW CD 1 0 1 0 0 0 1 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23. Register Address 8 Field Descriptions

Bit Field Type Reset Description
D9 CLK SW CD User should set this bit to 1 when changing the clock phase of the clock divider CD. After the change is complete user needs to write this bit back to 0.
D8 Reads back 1
D6 Reads back 1
D2 Reads back 1

7.6.1.10 Register Address 12

Figure 74. Register Address 12, Default: 0x31E4, Hex = C
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 1 1 0 0 0 1 1 1 SYSREF JESD MODE CD SYSREF JESD MODE AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 24. Register Address 12 Field Descriptions

Bit Field Type Reset Description
D13 Reads back 1
D12 Reads back 1
D8 Reads back 1
D7 Reads back 1
D6 Reads back 1
D5:D3 SYSREF JESD MODE CD Determines how SYSREF is used in the JESD block for channel CD
000 = Ignore SYSREF input
001 = Use all SYSREF pulses
010 = Use only the next SYSREF pulse
011 = Skip one SYSREF pulse then use only the next one
100 = Skip one SYSREF pulse then use all pulses (default)
101 = Skip two SYSREF pulses and then use one
111 = Skip two SYSREF pulses and then use all
D2:D0 SYSREF JESD MODE AB Determines how SYSREF is used in the JESD block for channel AB. Same functionality as SYSREF JESD MODE CD

7.6.1.11 Register Address 13

Figure 75. Register Address 13, Default: 0x0202, Hex = D
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 JESD INIT CD JESD RESET CD 0 0 0 0 0 0 JESD INIT AB JESD RESET AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 25. Register Address 13 Field Descriptions

Bit Field Type Reset Description
D9 JESD INIT CD Puts the JESD block in INITIALIZATION state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0. See also JESD start-up sequence.
D8 JESD RESET CD Resets the JESD block when low
D1 JESD INIT AB Puts the JESD block in initialization state when set high. In this state the JESD parameters can be programmed and the outputs will stay at 0.
D0 JESD RESET AB Resets the JESD block when low

7.6.1.12 Register Address 14

Figure 76. Register Address 14, Default: 0x00FF, Hex = E
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 TX LANE EN CD TX LANE EN AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Register Address 14 Field Descriptions

Bit Field Type Reset Description
D7:D4 TX LANE EN CD Enables JESD204B transmitter for channel C and D. Set to 1 to enable.
D7 = Lane DD1
D6 = Lane DD0
D5 = Lane DC1
D4 = Lane DC0
D3:D0 TX LANE EN AB Enables JESD204B transmitter for channel A and B. Set to 1 to enable.
D3 = Lane DB1
D2 = Lane DB0
D1 = Lane DA1
D0 = Lane DA0

7.6.1.13 Register Address 15

Figure 77. Register Address 15, Default: 0x0001, Hex = F
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CTRL F AB 0 0 0 0 0 0 CTRL M AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Register Address 15 Field Descriptions

Bit Field Type Reset Description
D9:D8 CTRL F AB Controls number of octets per frame for channel AB.
00 = F = 1 (default)
01 = F = 2
D1:D0 CTRL M AB Controls number of converters per link for channel AB.
01 = M = 2. This is the only valid option (default)

7.6.1.14 Register Address 16

Figure 78. Register Address 16, Default: 0x03E3, Hex = 10
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CTRL K AB 0 0 0 CTRL L AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 28. Register Address 16 Field Descriptions

Bit Field Type Reset Description
D9:D5 CTRL K AB Controls number of frames per multi-frame for channel AB.
0: K = 1     30     K = 31
1: K = 2     31     K = 32 (default)
And so forth
D1:D0 CTRL L AB Controls number of lanes for channel AB.
01: L = 2
11: L = 4 (default)

7.6.1.15 Register Address 19

Figure 79. Register Address 19, Default: 0x0020, Hex = 13
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 INV SYNCb AB HD AB SCR EN AB 0 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 29. Register Address 19 Field Descriptions

Bit Field Type Reset Description
D6 INV SYNCb AB Inverts polarity of SYNCbAB input
0 = Normal operation
1 = Polarity inverted
D5 HD AB Enables high density mode for channel AB. This mode is needed for LMFS = 4221.
0 = High-density mode disabled for mode LMFS = 2221
1 = High-density mode enabled for mode LMFS = 4221 (default)
D4 SCR EN AB Enables scramble mode for channel AB
0 = Scramble mode disabled (default)
1 = Scramble mode enabled

7.6.1.16 Register Address 22

Figure 80. Register Address 22, Default: 0x0001, Hex = 16
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CTRL F CD 0 0 0 0 0 0 CTRL M CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 30. Register Address 22 Field Descriptions

Bit Field Type Reset Description
D9:D8 CTRL F CD Controls number of octets per frame for channel CD.
00: F = 1 (default)
01: F = 2
D1:D0 CTRL M CD Controls number of converters per link for channel CD.
01: M = 2. This is the only valid option (default)

7.6.1.17 Register Address 23

Figure 81. Register Address 23, Default: 0x03E3, Hex = 17
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 CTRL K CD 0 0 0 CTRL L CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 31. Register Address 23 Field Descriptions

Bit Field Type Reset Description
D9:D5 CTRL K CD Controls number of frames per multi-frame for channel CD
0: K = 1     30     K = 31
1: K = 2     31     K = 32 (default)
And so forth
D1:D0 CTRL L CD Controls number of lanes for channel CD
01: L = 2
11: L = 4 (default)

7.6.1.18 Register Address 26

Figure 82. Register Address 26, Default: 0x0020, Hex = 1A
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 INV SYNCb CD HD CD SCR EN CD 0 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 32. Register Address 26 Field Descriptions

Bit Field Type Reset Description
D6 INV SYNCb CD Inverts polarity of SYNCbCD input
0 = Normal operation
1 = Polarity inverted
D5 HD CD Enables high density mode for channel CD. This mode is needed for LMFS = 4221.
0 = High density mode disabled for mode LMFS = 2221
1 = High density mode enabled for mode LMFS = 4221 (default)
D4 SCR EN CD Enables scramble mode for channel CD
0 = Scramble mode disabled (default)
1 = Scramble mode enabled

7.6.1.19 Register Address 29

Figure 83. Register Address 29, Default: 0x0000, Hex = 1D
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 TEST PATTERN EN CD TEST PATTERN EN AB 0 TEST PATTERN 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 33. Register Address 29 Field Descriptions

Bit Field Type Reset Description
D6 TEST PATTERN EN CD Enables test pattern output for channel C and D
0 = Normal operation
1 = Test pattern output enabled
D5 TEST PATTERN EN AB Enables test pattern output for channel A and B
0 = Normal operation
1 = Test pattern output enabled
D4 TEST PATTERN Selects test pattern
0 = RAMP pattern
1 = Output alternates between 0x1555 and 0x2AAA

7.6.1.20 Register Address 30

Figure 84. Register Address 30, Default: 0x0000, Hex = 1E
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 JESD SLEEP MODES – ENABLE pin
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 34. Register Address 30 Field Descriptions

Bit Field Type Reset Description
D9:D0 JESD SLEEP MODES – ENABLE pin Power-down function assigned to ENABLE pin. When any bit is set, the corresponding function is always enabled regardless of status of the ENABLE pin.
D9 = JESD PLL channel CD
D8 = JESD PLL channel AB
D7 = Lane DD1
D6 = Lane DD0
D5 = Lane DC1
D4 = Lane DC0
D3 = Lane DB1
D2 = Lane DB0
D1 = Lane DA1
D0 = Lane DA0

Table 35. Configurations

Description
00 0000 0000 Global power down (default)
00 0000 0000 Standby
11 0000 0000 Deep sleep
11 0000 0000 Light sleep

7.6.1.21 Register Address 31

Figure 85. Register Address 31, Default: 0xFFFF, Hex = 1F
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
1 1 1 1 1 1 JESD SLEEP MODES – SPI
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 36. Register Address 31 Field Descriptions

Bit Field Type Reset Description
D15:D0 JESD SLEEP MODES – SPI Power-down function controlled via SPI. When a bit is set to 0, the function is powered down when ENABLE pin is high. However register 0x1E has higher priority. For example, if D9 (JESD PLL channel CD) in 0x1E is enabled, it cannot be powered down with the ENABLE pin.
D9 = JESD PLL channel CD
D8 = JESD PLL channel AB
D7 = Lane DD1
D6 = Lane DD0
D5 = Lane DC1
D4 = Lane DC0
D3 = Lane DB1
D2 = Lane DB0
D1 = Lane DA1
D0 = Lane DA0

Table 37. Configurations

Description
00 0000 0000 Global power down
00 0000 0000 Standby
11 0000 0000 Deep sleep
11 0000 0000 Light sleep
11 1111 1111 Normal operation (default)

Control power down function through ENABLE pin:

  1. Configure power down mode in register 0x1E
  2. Normal operation: ENABLE pin high
  3. Power down mode: ENABLE pin low

Control power down function through SPI (ENABLE pin always high):

  1. Assign power down mode in register 0x1F
  2. Normal operation 0x1F is 0xFFFF
  3. Power-down mode: configure power down mode in register 0x1F

7.6.1.22 Register Address 32

Figure 86. Register Address 32, Default: 0x0000, Hex = 20
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
JESD LANE POLARITY INVERT PRBS EN
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 38. Register Address 32 Field Descriptions

Bit Field Type Reset Description
D15:D8 JESD LANE POLARITY INVERT Set to 1 for polarity inversion
D15 = Lane DD1
D14 = Lane DD0
D13 = Lane DC1
D12 = Lane DC0
D11 = Lane DB1
D10 = Lane DB0
D9 = Lane DA1
D8 = Lane DA0
D7:D0 PRBS EN Outputs PRBS pattern selected in address 0x21 on the selected serial output lanes
D7 = Lane DD1
D6 = Lane DD0
D5 = Lane DC1
D4 = Lane DC0
D3 = Lane DB1
D2 = Lane DB0
D1 = Lane DA1
D0 = Lane DA0

7.6.1.23 Register Address 33

Figure 87. Register Address 33, Default: 0x0000, Hex = 21
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
PRBS SEL 0 0 0 0 0 0 0 0 0 0 VREF SEL
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 39. Register Address 33 Field Descriptions

Bit Field Type Reset Description
D14:D13 PRBS SEL Selects different PRBS output pattern (these are not 8b/10b encoded)
000 = 231 – 1
001 = 27 – 1
010 = 215 – 1
011 = 223 – 1
D2:D0 VREF SEL Selects different input full-scale amplitude by adjusting voltage reference setting
000 = Full scale is 1.25 Vpp (default)
001 = Full scale is 1.35 Vpp
010 = Full scale is 1.5 Vpp
011 = External
100 = Full scale is 1.15 Vpp
101 = Full scale is 1.0 Vpp

7.6.1.24 Address: 0x24, 0x25, 0x26, 0x27

Figure 88. Address: 0x24, 0x25, 0x26, 0x27; Default: 0x0000, Hex = 24, 25, 26, 27
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TDD BURST MODE COUNTER L1 [15:0] AB
TDD BURST MODE COUNTER L2 [15:0] AB
TDD BURST MODE COUNTER L3 [15:0] AB
TDD BURST MODE COUNTER L4 [15:0] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 40. Address: 0x24, 0x25, 0x26, 0x27 Field Descriptions

Bit Field Type Reset Description
TDD BURST MODE COUNTER L1, L2, L3, L4 [15:0] AB

Low-resolution counters L1, L2, L3, L4 for channel A and B. L1 is also used for regular bust mode.

Each count equals 4 samples. Upper 6 MSB [21:16] for each counter are located in address 0x2C and 0x2D

7.6.1.25 Address: 0x28, 0x29, 0x2A, 0x2B

Figure 89. Address: 0x28, 0x29, 0x2A, 0x2B; Default: 0x0000, Hex = 28, 29, 2A, 2B
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TDD BURST MODE COUNTER H1 [15:0] AB
TDD BURST MODE COUNTER H2 [15:0] AB
TDD BURST MODE COUNTER H3 [15:0] AB
TDD BURST MODE COUNTER H4 [15:0] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 41. Address: 0x28, 0x29, 0x2A, 0x2B Field Descriptions

Bit Field Type Reset Description
TDD BURST MODE COUNTER H1, H2, H3, H4 [15:0] AB

High-resolution counters H1, H2, H3, H4 for channel A and B. H1 is also used for regular bust mode.

Each count equals 4 samples. Upper 6 MSB [21:16] for each counter are located in address 0x2E and 0x2F

7.6.1.26 Register Address 44

Figure 90. Register Address 44, Default: 0x0000, Hex = 2C
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
BM TRIG AB TDD BURST MODE COUNTER L2 [21:16] AB 0 0 TDD BURST MODE COUNTER L1 [21:16] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 42. Register Address 44 Field Descriptions

Bit Field Type Reset Description
D15:D14 BM TRIG AB Burst mode trigger source selection for channel A and B
00 = TRIGGERAB input (SYSREFCDP pin)
01 = TRIGGERCD input (SYSREFCDM pin)
10 = OVRA input
11 = TRIGGERAB and TRIGGERCD as differential input
D13:D8 TDD BURST MODE COUNTER L2 [21:16] AB Low-resolution counter L2 upper 6 MSB, channel AB
D5:D0 TDD BURST MODE COUNTER L1 [21:16] AB Low-resolution counter L1 upper 6 MSB, channel AB

7.6.1.27 Register Address 45

Figure 91. Register Address 45, Default: 0x0000, Hex = 2D
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 TDD BURST MODE COUNTER L4 [21:16] AB 0 0 TDD BURST MODE COUNTER L3 [21:16] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 43. Register Address 45 Field Descriptions

Bit Field Type Reset Description
D13:D8 TDD BURST MODE COUNTER L4 [21:16] AB Low-resolution counter L4 upper 6 MSB, channel AB
D5:D0 TDD BURST MODE COUNTER L3 [21:16] AB Low-resolution counter L3 upper 6 MSB, channel AB

7.6.1.28 Register Address 46

Figure 92. Register Address 46, Default: 0x0000, Hex = 2E
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 TDD BURST MODE COUNTER H2 [21:16] AB 0 0 TDD BURST MODE COUNTER H1 [21:16] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 44. Register Address 46 Field Descriptions

Bit Field Type Reset Description
D13:D8 TDD BURST MODE COUNTER H2 [21:16] AB High-resolution counter H2 upper 6 MSB, channel AB
D5:D0 TDD BURST MODE COUNTER H1 [21:16] AB High-resolution counter H1 upper 6 MSB, channel AB

7.6.1.29 Register Address 47

Figure 93. Register Address 47, Default: 0x0000, Hex = 2F
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
AUTO TRIG AB TDD EN AB TDD BURST MODE COUNTER H4 [21:16] AB 0 0 TDD BURST MODE COUNTER H3 [21:16] AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 45. Register Address 47 Field Descriptions

Bit Field Type Reset Description
D15 AUTO TRIG AB Enables auto trigger mode for regular burst mode for channel A and B
0 = Auto trigger disabled
1 = Auto trigger enabled
D14 TDD EN AB Enables TDD burst mode
0 = TDD burst mode disabled
1 = TDD burst mode enabled
D13:D8 TDD BURST MODE COUNTER H4 [21:16] AB High-resolution counter H4 upper 6 MSB, channel AB
D5:D0 D5 to D0 TDD BURST MODE COUNTER H3 [21:16] AB High-resolution counter H3 upper 6 MSB, channel AB

7.6.1.30 Address: 0x32, 0x33, 0x34, 0x35

Figure 94. Address: 0x32, 0x33, 0x34, 0x35; Default: 0x0000, Hex = 32, 33, 34, 35
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TDD BURST MODE COUNTER L1 [15:0] CD
TDD BURST MODE COUNTER L2 [15:0] CD
TDD BURST MODE COUNTER L3 [15:0] CD
TDD BURST MODE COUNTER L4 [15:0] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 46. Address: 0x32, 0x33, 0x34, 0x35 Field Descriptions

Bit Field Type Reset Description
TDD BURST MODE COUNTER L1, L2, L3, L4 [15:0] CD

Low-resolution counters L1, L2, L3, L4 for channel C and D. L1 is also used for regular bust mode

Each count equals 4 samples. Upper 6 MSB [21:16] for each counter are located in address 0x3A and 0x3B

7.6.1.31 Address: 0x36, 0x37, 0x38, 0x39

Figure 95. Address: 0x36, 0x37, 0x38, 0x39; Default: 0x0000, Hex = 36, 37, 38, 39
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TDD BURST MODE COUNTER H1 [15:0] CD
TDD BURST MODE COUNTER H2 [15:0] CD
TDD BURST MODE COUNTER H3 [15:0] CD
TDD BURST MODE COUNTER H4 [15:0] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 47. Address: 0x36, 0x37, 0x38, 0x39 Field Descriptions

Bit Field Type Reset Description
TDD BURST MODE COUNTER H1, H2, H3, H4 [15:0] CD

High-resolution counters H1, H2, H3, H4 for channel C and D. H1 is also used for regular bust mode

Each count equals 4 samples. Upper 6 MSB [21:16] for each counter are located in address 0x3C and 0x3D

7.6.1.32 Register Address 58

Figure 96. Register Address 58, Default: 0x0000, Hex = 3A
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
BM TRIG CD TDD BURST MODE COUNTER L2 [21:16] CD 0 0 TDD BURST MODE COUNTER L1 [21:16] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 48. Register Address 58 Field Descriptions

Bit Field Type Reset Description
D15:D14 BM TRIG CD Burst mode trigger source selection for channel C and D
00 = TRIGGERAB input (SYSREFCDP pin)
01 = TRIGGERCD input (SYSREFCDM pin)
10 = OVRC input
11 = TRIGGERAB and TRIGGERCD as differential input
D13:D8 TDD BURST MODE COUNTER L2 [21:16] CD Low-resolution counter L2 upper 6 MSB, channel AB
D5:D0 TDD BURST MODE COUNTER L1 [21:16] CD Low-resolution counter L1 upper 6 MSB, channel AB

7.6.1.33 Register Address 59

Figure 97. Register Address 59, Default: 0x0000, Hex = 3B
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 TDD BURST MODE COUNTER L4 [21:16] CD 0 0 TDD BURST MODE COUNTER L3 [21:16] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 49. Register Address 59 Field Descriptions

Bit Field Type Reset Description
D13:D8 TDD BURST MODE COUNTER L4 [21:16] CD Low-resolution counter L4 upper 6 MSB, channel CD
D5:D0 TDD BURST MODE COUNTER L3 [21:16] CD Low-resolution counter L3 upper 6 MSB, channel CD

7.6.1.34 Register Address 60

Figure 98. Register Address 60, Default: 0x0000, Hex = 3C
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 TDD BURST MODE COUNTER H2 [21:16] CD 0 0 TDD BURST MODE COUNTER H1 [21:16] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 50. Register Address 60 Field Descriptions

Bit Field Type Reset Description
D13:D8 TDD BURST MODE COUNTER H2 [21:16] CD High-resolution counter H2 upper 6 MSB, channel CD
D5:D0 TDD BURST MODE COUNTER H1 [21:16] CD High-resolution counter H1 upper 6 MSB, channel

7.6.1.35 Register Address 61

Figure 99. Register Address 61, Default: 0x0000, Hex = 3D
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
AUTO TRIG CD TDD EN CD TDD BURST MODE COUNTER H4 [21:16] CD 0 0 TDD BURST MODE COUNTER H3 [21:16] CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 51. Register Address 61 Field Descriptions

Bit Field Type Reset Description
D15 AUTO TRIG CD Enables auto trigger mode for regular burst mode for channel C and D
0 = Auto trigger disabled
1 = Auto trigger enabled
D14 TDD EN CD Enables TDD burst mode for channel C and D
0 = TDD burst mode disabled
1 = TDD burst mode enabled
D13:D8 TDD BURST MODE COUNTER H4 [21:16] CD High-resolution counter H4 upper 6 MSB, channel CD
D5:D0 TDD BURST MODE COUNTER H3 [21:16] CD High-resolution counter H3 upper 6 MSB, channel CD

7.6.1.36 Register Address 99

Figure 100. Register Address 99, Default: 0x0000, Hex = 63
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 TEMP SENSOR
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 52. Register Address 99 Field Descriptions

Bit Field Type Reset Description
D8:D0 TEMP SENSOR Value of on chip temperature sensor (read only). Value is 2s complement of die temperature sensor in °C
For example: 0x0032 equals 50°C

7.6.1.37 Register Address 100

Figure 101. Register Address 100, Default: 0x0000, Hex = 64
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
PRE EMP SEL AB PRE EMP EN AB DCC EN AB 0 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 53. Register Address 100 Field Descriptions

Bit Field Type Reset Description
D15:D12 PRE EMP SEL AB Selects pre-emphasis of serializers for channel A and B
0 = Pre-emphasis
1 = De-emphasis
D11:D8 PRE EMP EN AB Enables pre-emphasis, 0 = disabled, 1 = enabled
D11 = Lane DB1
D10 = Lane DB0
D9 = Lane DA1
D8 = Lane DA0
D7:D4 DCC EN AB Enables the duty cycle correction circuit for each of the serializers
D7 = Lane DB1
D6 = Lane DB0
D5 = Lane DA1
D4 = Lane DA0

7.6.1.38 Register Address 103

Figure 102. Register Address 103, Default: 0x0000, Hex = 67
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
OUTPUT CURRENT CONTROL AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 54. Register Address 103 Field Descriptions

Bit Field Type Reset Description
D15:D0 OUTPUT CURRENT CONTROL AB Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel A and B.
D15:D12 = Lane DB1
D11:D8 = Lane DB0
D7:D4 = Lane DA1
D3:D0 = Lane DA0

Table 55. Pre-Emphasis Level is: Decimal Value / 30

Description
0000 Normal operation
0001 1 / 30
0010 2 / 30
and so forth

7.6.1.39 Register Address 104

Figure 103. Register Address 104, Default: 0x0000, Hex = 68
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
PRE EMP SEL CD PRE EMP EN CD DCC EN CD 0 0 0 0
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 56. Register Address 104 Field Descriptions

Bit Field Type Reset Description
D15:D12 PRE EMP SEL CD Selects pre-emphasis of serializers for channel C and D
0 = Pre-emphasis
1 = De-emphasis
D11:D8 PRE EMP EN CD Enables pre-emphasis, 0 = disabled, 1 = enabled
D11 = Lane DD1
D10 = Lane DD0
D9 = Land DC1
D8 = Lane DC0
D7:D4 DCC EN CD Enables the duty cycle correction circuit for each of the serializers
D7 = Lane DD1
D6 = Lane DD0
D5 = Land DC1
D4 = Lane DC0

7.6.1.40 Register Address 107

Figure 104. Register Address 107, Default: 0x0000, Hex = 6B
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
OUTPUT CURRENT CONTROL CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 57. Register Address 107 Field Descriptions

Bit Field Type Reset Description
D15:D0 OUTPUT CURRENT CONTROL CD Selects pre-emphasis current for the serializers. There are 4 bit per serializer of channel C and D.
D15:D12 = Lane DD1
D11:D8 = Lane DD0
D7:D4 = Land DC1
D3:D0 = Lane DC0

Table 58. Pre-Emphasis Level is: Decimal Value / 30

Description
0000 Normal operation
0001 1 / 30
0010 2 / 30
And so forth

7.6.1.41 Register Address 108

Figure 105. Register Address 108, Hex = 6C
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 0 TDD RATIO CD TDD RATIO AB BM RATIO CD BM RATIO AB JESD PLL CD JESD PLL AB
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 59. Register Address 108 Field Descriptions(1)

Bit Field Type Reset Description
D5 TDD RATIO CD TDD burst mode high-to-low resolution duty cycle for channel CD is invalid when flag is set
D4 TDD RATIO AB TDD burst mode high-to-low resolution duty cycle for channel AB is invalid when flag is set
D3 BM RATIO CD Burst mode high-to-low resolution duty cycle for channel CD is invalid when flag is set
D2 BM RATIO CD Burst mode high-to-low resolution duty cycle for channel AB is invalid when flag is set
D1 JESD PLL CD JESD PLL for channel CD lost lock when flag is set high
D0 JESD PLL CD JESD PLL for channel AB lost lock when flag is set high
(1) Register values in address 0x6C are read only alarms

7.6.1.42 Register Address 111

Figure 106. Register Address 111, Default: 0x0000, Hex = 6F
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 0 0 0 0 0 TRDY EN AB 0 0 0 0 0 TRDY EN CD
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 60. Register Address 111 Field Descriptions

Bit Field Type Reset Description
D6 TRDY EN AB Selects to output TRDY flag in burst mode operation on OVRB pin for channel A/B
0 = Fast overrange indicator for channel B is output on OVRB pin
1 = Trigger ready flag output on OVRB pin
D0 TRDY EN CD Selects to output TRDY flag in burst mode operation on OVRD pin for channel C/D
0 = Fast overrange indicator for channel D is output on OVRD pin
1 = Trigger ready flag output on OVRD pin