JAJSHW6A september   2019  – august 2023 BQ21061

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Linear Charger and Power Path
        1. 7.3.1.1 Battery Charging Process
        2. 7.3.1.2 JEITA and Battery Temperature Dependent Charging
        3. 7.3.1.3 Input Voltage Based Dynamic Power Management (VINDPM) and Dynamic Power Path Management (DPPM)
        4. 7.3.1.4 Battery Supplement Mode
      2. 7.3.2  Protection Mechanisms
        1. 7.3.2.1 Input Over-Voltage Protection
        2. 7.3.2.2 Safety Timer and I2C Watchdog Timer
        3. 7.3.2.3 Thermal Protection and Thermal Charge Current Foldback
        4. 7.3.2.4 Battery Short and Over Current Protection
        5. 7.3.2.5 PMID Short Circuit
      3. 7.3.3  VDD LDO
      4. 7.3.4  Load Switch/LDO Output and Control
      5. 7.3.5  PMID Power Control
      6. 7.3.6  System Voltage (PMID) Regulation
      7. 7.3.7  MR Wake and Reset Input
        1. 7.3.7.1 MR Wake or Short Button Press Functions
        2. 7.3.7.2 MR Reset or Long Button Press Functions
      8. 7.3.8  14-Second Watchdog for HW Reset
      9. 7.3.9  Faults Conditions and Interrupts ( INT)
        1. 7.3.9.1 Flags and Fault Condition Response
      10. 7.3.10 Power Good ( PG) Pin
      11. 7.3.11 External NTC Monitoring (TS)
        1. 7.3.11.1 TS Thresholds
      12. 7.3.12 I2C Interface
        1. 7.3.12.1 F/S Mode Protocol
    4. 7.4 Device Functional Modes
      1. 7.4.1 Ship Mode
      2. 7.4.2 Low Power
      3. 7.4.3 Active Battery
      4. 7.4.4 Charger/Adapter Mode
      5. 7.4.5 Power-Up/Down Sequencing
    5. 7.5 Register Map
      1. 7.5.1 I2C Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input (IN/PMID) Capacitors
        2. 8.2.2.2 VDD, LDO Input and Output Capacitors
        3. 8.2.2.3 TS
        4. 8.2.2.4 Recommended Passive Components
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 サード・パーティ製品に関する免責事項
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 サポート・リソース
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 Trademarks
    7. 11.7 用語集
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Low Power

Low Power mode is a low quiescent current state while operating from the battery. The device will operate in low power mode when the LP pin is set low, VIN < VUVLO , MR pin is high and all I2C transactions and interrupts that started while in the Active Battery or Charging Modes have been completed and sent. During LP mode the VDD output is powered by BAT, the MR inputs are active and the I2C is disabled. All other circuits, such as oscillators, are in a low power or off state. The LS/LDO outputs will remain in the state set by the EN_LS_LDO bit prior to entering Low Power Mode. The device exits LP Mode when the LP pin is set high or VIN > VUVLO.

In the case that a faulty adapter with VIN > VOVP is connected to the device while LP pin is low, the device will be powered from the battery, but will operate in Active battery mode instead of Low Power mode regardless of the LP pin state.

When MR is held low while LP is low, the device will enter Active Battery Mode, this allows for the internal clocks of the device to be running and allow the MR long button press HW reset. I2C operation is also possible during this condition. Note that as soon as the MR input is released and goes high, the device will go back to LP Mode tuning off all clocks. Note that if a HW reset has occurred while LP is low, MR must remain low until the power cycle has completed (PMID and LDO enable) to allow completion of the power up sequence.