JAJSKU7C September   2022  – February 2024 BQ25620 , BQ25622

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. 概要 (続き)
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power-On-Reset (POR)
      2. 8.3.2  Device Power Up from Battery
      3. 8.3.3  Device Power Up from Input Source
        1. 8.3.3.1 REGN LDO Power Up
        2. 8.3.3.2 Poor Source Qualification
        3. 8.3.3.3 D+/D– Detection Sets Input Current Limit (BQ25620 Only)
        4. 8.3.3.4 ILIM Pin (BQ25622 Only)
        5. 8.3.3.5 Input Voltage Limit Threshold Setting (VINDPM Threshold)
        6. 8.3.3.6 Converter Power-Up
      4. 8.3.4  Power Path Management
        1. 8.3.4.1 Narrow VDC Architecture
        2. 8.3.4.2 Dynamic Power Management
        3. 8.3.4.3 High Impedance Mode
      5. 8.3.5  Battery Charging Management
        1. 8.3.5.1 Autonomous Charging Cycle
        2. 8.3.5.2 Battery Charging Profile
        3. 8.3.5.3 Charging Termination
        4. 8.3.5.4 Thermistor Qualification
          1. 8.3.5.4.1 Advanced Temperature Profile in Charge Mode
          2. 8.3.5.4.2 TS Pin Thermistor Configuration
          3. 8.3.5.4.3 Cold/Hot Temperature Window in OTG Mode
          4. 8.3.5.4.4 JEITA Charge Rate Scaling
          5. 8.3.5.4.5 TS_BIAS Pin (BQ25622 Only)
        5. 8.3.5.5 Charging Safety Timers
      6. 8.3.6  USB On-The-Go (OTG)
        1. 8.3.6.1 Boost OTG Mode
      7. 8.3.7  Integrated 12-Bit ADC for Monitoring
      8. 8.3.8  Status Outputs ( PG, STAT, INT)
        1. 8.3.8.1 PG Pin Power Good Indicator
        2. 8.3.8.2 Interrupts and Status, Flag and Mask Bits
        3. 8.3.8.3 Charging Status Indicator (STAT)
        4. 8.3.8.4 Interrupt to Host ( INT)
      9. 8.3.9  BATFET Control
        1. 8.3.9.1 Shutdown Mode
        2. 8.3.9.2 Ship Mode
        3. 8.3.9.3 System Power Reset
      10. 8.3.10 Protections
        1. 8.3.10.1 Voltage and Current Monitoring in Battery Only and HIZ Modes
          1. 8.3.10.1.1 Battery Undervoltage Lockout
          2. 8.3.10.1.2 Battery Overcurrent Protection
        2. 8.3.10.2 Voltage and Current Monitoring in Buck Mode
          1. 8.3.10.2.1 Input Overvoltage
          2. 8.3.10.2.2 System Overvoltage Protection (SYSOVP)
          3. 8.3.10.2.3 Forward Converter Cycle-by-Cycle Current Limit
          4. 8.3.10.2.4 System Short
          5. 8.3.10.2.5 Battery Overvoltage Protection (BATOVP)
          6. 8.3.10.2.6 Sleep and Poor Source Comparators
        3. 8.3.10.3 Voltage and Current Monitoring in Boost Mode
          1. 8.3.10.3.1 Boost Mode Overvoltage Protection
          2. 8.3.10.3.2 Boost Mode Duty Cycle Protection
          3. 8.3.10.3.3 Boost Mode PMID Undervoltage Protection
          4. 8.3.10.3.4 Boost Mode Battery Undervoltage
          5. 8.3.10.3.5 Boost Converter Cycle-by-Cycle Current Limit
          6. 8.3.10.3.6 Boost Mode SYS Short
        4. 8.3.10.4 Thermal Regulation and Thermal Shutdown
          1. 8.3.10.4.1 Thermal Protection in Buck Mode
          2. 8.3.10.4.2 Thermal Protection in Boost Mode
          3. 8.3.10.4.3 Thermal Protection in Battery-Only Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Host Mode and Default Mode
      2. 8.4.2 Register Bit Reset
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Data Validity
        2. 8.5.1.2 START and STOP Conditions
        3. 8.5.1.3 Byte Format
        4. 8.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.5.1.5 Target Address and Data Direction Bit
        6. 8.5.1.6 Single Write and Read
        7. 8.5.1.7 Multi-Write and Multi-Read
    6. 8.6 Register Maps
      1. 8.6.1 Register Programming
      2. 8.6.2 BQ25620 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 サード・パーティ製品に関する免責事項
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Guidelines

The switching node rise and fall times should be minimized for lowest switching loss. Proper layout of the components to minimize high frequency current path loop (see Figure 11-1) is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the proper layout.

  1. For lowest switching noise during forward/charge mode, place the decoupling capacitor CPMID1 and then bulk capacitor CPMID2 positive terminals as close as possible to PMID pin. Place the capacitor ground terminal close to the GND pin using the shortest copper trace connection or GND plane on the same layer as the IC. See Figure 11-2.
  2. For lowest switching noise during reverse/OTG mode, place the CSYS1 and CSYS2 output capacitors' positive terminals near the SYS pin. The capacitors' ground terminals must be via'd down through multiple vias to an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See Figure 11-2.
  3. Since REGN powers the internal gate drivers, place the CREGN capacitor positive terminal close to REGN pin to minimize switching noise. The capacitor's ground terminal must be via'd down through multiple vias to an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See Figure 11-2.
  4. Place the CVBUS and CBAT capacitors positive terminals as close to the VBUS and BAT pins as possible. The capacitors' ground terminals must be via'd down through multiple vias to an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See Figure 11-2.
  5. Place the inductor input pin near the positive terminal of the SYS pin capacitors. Due to the PMID capacitor placement requirements, the inductor's switching node terminal must be via'd down with multiple via's to a second internal layer with a wide trace that returns to the SW pin with multiple vias. See Figure 11-3. Using multiple vias ensures that the via's additional resistance is negligible compared to the inductor's dc resistance and therefore does not impact efficiency. The vias additional series inductance is negligible compared to the inductor's inductance.
  6. Place the BTST capacitor on the opposite side from the IC using vias to connect to the BTST pin and SW node. See Figure 11-4.
  7. A separate analog GND plane for non-power related resistors and capacitors is not required if those components are placed away from the power components traces and planes.
  8. Ensure that the I2C SDA and SCL lines are routed away from the SW node.

Additionally, it is important that the PCB footprint and solder mask for the BQ25620 cover the entire length of each of the pins. GND, SW, PMID, SYS and BAT pins extend further into the package than the other pins. Using the entire length of these pins reduces parasitic resistance and increases thermal conductivity from the package into the board.