JAJSPI5B December   2022  – August 2024 DLP4621-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
      1. 5.4.1 Illumination Overfill Diagram
    5. 5.5  Thermal Information
    6. 5.6  Electrical Characteristics
    7. 5.7  Timing Requirements
      1.      Electrical and Timing Diagrams
    8. 5.8  Switching Characteristics
      1. 5.8.1 LPSDR and Test Load Circuit Diagrams
    9. 5.9  System Mounting Interface Loads
      1.      System Interface Loads Diagram
    10. 5.10 Micromirror Array Physical Characteristics
      1. 5.10.1 Micromirror Array Physical Characteristics Diagram
    11. 5.11 Micromirror Array Optical Characteristics
    12. 5.12 Window Characteristics
    13. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 SubLVDS Data Interface
      2. 6.3.2 Low Speed Interface for Control
      3. 6.3.3 DMD Voltage Supplies
      4. 6.3.4 Asynchronous Reset
      5. 6.3.5 Temperature Sensing Diode
        1. 6.3.5.1 Temperature Sense Diode Theory
    4. 6.4 System Optical Considerations
      1. 6.4.1 Numerical Aperture and Stray Light Control
      2. 6.4.2 Pupil Match
      3. 6.4.3 Illumination Overfill
    5. 6.5 DMD Image Performance Specification
    6. 6.6 Micromirror Array Temperature Calculation
      1. 6.6.1 Monitoring Array Temperature Using the Temperature Sense Diode
    7. 6.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Application Overview
      2. 7.2.2 Input Image Resolution
      3. 7.2.3 Reference Design
      4. 7.2.4 Application Mission Profile Consideration
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Power Supply Power-Up Procedure
      2. 7.3.2 Power Supply Power-Down Procedure
      3. 7.3.3 Power Supply Sequencing Requirements
    4. 7.4 Layout Guidelines
    5. 7.5 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
      2. 8.1.2 Device Markings
    2. 8.2 サード・パーティ製品に関する免責事項
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 Trademarks
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 DMD Handling
    8. 8.8 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • FQX|120
サーマルパッド・メカニカル・データ
発注情報

Monitoring Array Temperature Using the Temperature Sense Diode

The active array temperature can be computed analytically from the temperature sense diode measurement, the thermal resistance from array to diode, the electrical power, and the illumination heat load. The relationship between array temperature and the temperature sense diode is provided by the following equations:

Equation 7. TARRAY = TDIODE + (QARRAY × RARRAY–TO–DIODE)
Equation 8. QILLUMINATION = (QINCIDENT × DMD Absorption Constant)
Equation 9. QARRAY = QELECTRICAL + QILLUMINATION

where

  • TARRAY = computed array temperature (°C)
  • TDIODE = measured temperature sense diode temperature (°C)
  • RARRAY–TO–DIODE = package thermal resistance from array to diode (°C/W)
  • QARRAY = total power, electrical plus absorbed, on the DMD array (W)
    Refer to Section 7.6 for details.
  • QELECTRICAL = nominal electrical power dissipation by the DMD (W)
  • QILLUMINATION = absorbed illumination heat load (W)
  • QINCIDENT = incident power on the DMD (W)

The temperature sense diode to array thermal resistance (RARRAY–TO–DIODE) assumes a non-uniform illumination distribution on the DMD as shown in Non-Uniform Illumination Profile. For illumination profiles more uniform than the one highlighted in Non-Uniform Illumination Profile, the value provided here is valid.  However, for more non-uniform profiles (for example, Gaussian distribution), the thermal resistance will be higher. Please contact TI to determine an accurate value for this case.

The following sample calculations assume 10% of the total incident light falls outside of the active array and POM, and the mirrors are in the OFF state.

  1. TDIODE = 54°C
  2. QINCIDENT = 10W (measured)
  3. DMD Absorption Constant = 0.895 – 0.004783 × 90 = 0.46
  4. QELECTRICAL = 0.4W
  5. RARRAY–TO–DIODE = 0.5°C/W
  6. QARRAY = 0.4W + (0.46 × 10W) = 5W
  7. TARRAY = 54°C + (5 W × 0.5°C/W) = 56.5°C