JAJSEU8D February   2018  – October 2020 DLPC3432

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Test Pins and General Control
    2. 5.2 Parallel Port Input
    3. 5.3 DSI Input Data and Clock
    4. 5.4 DMD Reset and Bias Control
    5. 5.5 DMD Sub-LVDS Interface
    6. 5.6 Peripheral Interface
    7. 5.7 GPIO Peripheral Interface
    8. 5.8 Clock and PLL Support
    9. 5.9 Power and Ground
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Electrical Characteristics
    6. 6.6  Pin Electrical Characteristics
    7. 6.7  Internal Pullup and Pulldown Electrical Characteristics
    8. 6.8  DMD Sub-LVDS Interface Electrical Characteristics
    9. 6.9  DMD Low-Speed Interface Electrical Characteristics
    10. 6.10 System Oscillator Timing Requirements
    11. 6.11 Power Supply and Reset Timing Requirements
    12. 6.12 Parallel Interface Frame Timing Requirements
    13. 6.13 Parallel Interface General Timing Requirements
    14. 6.14 BT656 Interface General Timing Requirements
    15. 6.15 DSI Host Timing Requirements
    16. 6.16 Flash Interface Timing Requirements
    17. 6.17 Other Timing Requirements
    18. 6.18 DMD Sub-LVDS Interface Switching Characteristics
    19. 6.19 DMD Parking Switching Characteristics
    20. 6.20 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Source Requirements
        1. 7.3.1.1 Supported Resolution and Frame Rates
        2. 7.3.1.2 3D Display
        3. 7.3.1.3 Parallel Interface
          1. 7.3.1.3.1 PDATA Bus – Parallel Interface Bit Mapping Modes
        4. 7.3.1.4 DSI Interface
      2. 7.3.2 Device Startup
      3. 7.3.3 SPI Flash
        1. 7.3.3.1 SPI Flash Interface
        2. 7.3.3.2 SPI Flash Programming
      4. 7.3.4 I2C Interface
      5. 7.3.5 Content Adaptive Illumination Control (CAIC)
      6. 7.3.6 Local Area Brightness Boost (LABB)
      7. 7.3.7 3D Glasses Operation
      8. 7.3.8 Test Point Support
      9. 7.3.9 DMD Interface
        1. 7.3.9.1 Sub-LVDS (HS) Interface
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 PLL Design Considerations
    2. 9.2 System Power-Up and Power-Down Sequence
    3. 9.3 Power-Up Initialization Sequence
    4. 9.4 DMD Fast Park Control (PARKZ)
    5. 9.5 Hot Plug I/O Usage
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1  PLL Power Layout
      2. 10.1.2  Reference Clock Layout
        1. 10.1.2.1 Recommended Crystal Oscillator Configuration
      3. 10.1.3  DSI Interface Layout
      4. 10.1.4  Unused Pins
      5. 10.1.5  DMD Control and Sub-LVDS Signals
      6. 10.1.6  Layer Changes
      7. 10.1.7  Stubs
      8. 10.1.8  Terminations
      9. 10.1.9  Routing Vias
      10. 10.1.10 Thermal Considerations
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Device Markings
      3. 11.1.3 Video Timing Parameter Definitions
    2. 11.2 Related Documentation
    3. 11.3 Related Links
    4. 11.4 ドキュメントの更新通知を受け取る方法
    5. 11.5 サポート・リソース
    6. 11.6 Trademarks
    7. 11.7 静電気放電に関する注意事項
    8. 11.8 用語集
  12. 12Mechanical, Packaging, and Orderable Information
  13. 13Package Option Addendum
    1. 13.1 Packaging Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

Peripheral Interface

PIN(1)I/OTYPE(2)DESCRIPTION
NAMENO.
CMP_OUTA12I6Successive approximation ADC (analog-to-digital converter) comparator output (DLPC34xx Input). To implement, use a successive approximation ADC with a thermistor feeding one input of the external comparator and the DLPC34xx controller GPIO_10 (RC_CHARGE) pin driving the other side of the comparator. It is recommended to use the DLPAxxxx to achieve this function. CMP_OUT must be pulled-down to ground if this function is not used. (hysteresis buffer)
CMP_PWMA15O1TI internal use. Leave this pin unconnected.
HOST_IRQ(3)N8O9Host interrupt (output)
HOST_IRQ indicates when the DLPC34xx auto-initialization is in progress and most importantly when it completes.
This pin is tri-stated during reset. An external pullup must be included on this signal.
IIC0_SCL(4)N10I/O7I2C secondary (port 0) SCL (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The secondary I2C I/Os are 3.6-V tolerant (high-voltage-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I2C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the VIH specification of the secondary I2C input buffers).
IIC1_SCLR11I/O8TI internal use. TI recommends an external pullup resistor.
IIC0_SDA(4)N9I/O7I2C secondary (port 0) SDA. (bidirectional, open-drain signal with input hysteresis): This pin requires an external pullup resistor. The secondary I2C port is the control port of controller. The secondary I2C I/O pins are 3.6-V tolerant (high-volt-input tolerant) and are powered by VCC_INTF (which can be 1.8, 2.5, or 3.3 V). External I2C pullups must be connected to a host supply with an equal or higher supply voltage, up to a maximum of 3.6 V (a lower pullup supply voltage does not typically satisfy the VIH specification of the secondary I2C input buffers).
IIC1_SDAR10I/O8TI internal use. TI recommends an external pullup resistor.
LED_SEL_0B15O1LED enable select. Automatically controlled by the DLPC34xx programmable DMD sequence.
LED_SEL(1:0)
00
01
10
11
Enabled LED
None
Red
Green
Blue
LED_SEL_1B14O1The controller drives these signals low when RESETZ is asserted and the corresponding I/O power is supplied. The controller continues to drive these signals low throughout the auto-initialization process. A weak, external pulldown resistor is recommended to ensure that the LEDs are disabled when I/O power is not applied.
SPI0_CLKA13O13SPI (Serial Peripheral Interface) port 0, clock. This pin is typically connected to the flash memory clock.
SPI0_CSZ0A14O13SPI port 0, chip select 0 (active low output). This pin is typically connected to the flash memory chip select.
TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.
SPI0_CSZ1C12O13SPI port 0, chip select 1 (active low output). This pin typically remains unused.
TI recommends an external pullup resistor to avoid floating inputs to the external SPI device during controller reset assertion.
SPI0_DINB12I12Synchronous serial port 0, receive data in. This pin is typically connected to the flash memory data out.
SPI0_DOUTB13O13Synchronous serial port 0, transmit data out. This pin is typically connected to the flash memory data in.
External pullup resistor must be 8 kΩ or less.
See Table 5-2 for type definitions.
For more information about usage, see Section 7.3.2.
When VCC_INTF is powered and VDD is not powered, the controller may drive the IIC0_xxx pins low which prevents communication on this I2C bus. Do not power up the VCC_INTF pin before powering up the VDD pin for any system that has additional secondary devices on this bus.