SLVSH22 May   2024 DRV8000-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information RGZ package
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 External Components
    4. 7.4 Feature Description
      1. 7.4.1 Heater MOSFET Driver
        1. 7.4.1.1 Heater MOSFET Driver Control
        2. 7.4.1.2 Heater MOSFET Driver Protection
          1. 7.4.1.2.1 Heater SH_HS Internal Diode
          2. 7.4.1.2.2 Heater MOSFET VDS Overcurrent Protection (HEAT_VDS)
          3. 7.4.1.2.3 Heater MOSFET Open Load Detection
      2. 7.4.2 High-side Drivers
        1. 7.4.2.1 High-side Driver Control
          1. 7.4.2.1.1 High-side Driver PWM Generator
          2. 7.4.2.1.2 Constant Current Mode
          3. 7.4.2.1.3 OUT7 HS ITRIP Behavior
          4. 7.4.2.1.4 High-side Drivers - Parallel Outputs
        2. 7.4.2.2 High-side Driver Protection Circuits
          1. 7.4.2.2.1 High-side Drivers Internal Diode
          2. 7.4.2.2.2 High-side Driver Over Current Protection
          3. 7.4.2.2.3 High-side Driver Open Load Detection
      3. 7.4.3 Electro-chromic Glass Driver
        1. 7.4.3.1 Electro-chromic Driver Control
        2. 7.4.3.2 Electro-chromic Driver Protection
      4. 7.4.4 Half-bridge Drivers
        1. 7.4.4.1 Half-bridge Control
        2. 7.4.4.2 Half-bridge ITRIP Regulation
        3. 7.4.4.3 Half-bridge Protection and Diagnostics
          1. 7.4.4.3.1 Half-bridge Off-State Diagnostics (OLP)
          2. 7.4.4.3.2 Half-Bridge Active Open Load Detection (OLA)
          3. 7.4.4.3.3 Half-Bridge Over-Current Protection
      5. 7.4.5 Gate Drivers
        1. 7.4.5.1 Input PWM Modes
          1. 7.4.5.1.1 Half-Bridge Control
          2. 7.4.5.1.2 H-Bridge Control
          3. 7.4.5.1.3 DRVOFF - Gate Driver Shutoff Pin
        2. 7.4.5.2 Smart Gate Driver - Functional Block Diagram
          1. 7.4.5.2.1  Smart Gate Driver
          2. 7.4.5.2.2  Functional Block Diagram
          3. 7.4.5.2.3  Slew Rate Control (IDRIVE)
          4. 7.4.5.2.4  Gate Driver State Machine (TDRIVE)
            1. 7.4.5.2.4.1 tDRIVE Calculation Example
          5. 7.4.5.2.5  Propagation Delay Reduction (PDR)
          6. 7.4.5.2.6  PDR Pre-Charge/Pre-Discharge Control Loop Operation Details
            1. 7.4.5.2.6.1 PDR Pre-Charge/Pre-Discharge Setup
          7. 7.4.5.2.7  PDR Post-Charge/Post-Discharge Control Loop Operation Details
            1. 7.4.5.2.7.1 PDR Post-Charge/Post-Discharge Setup
          8. 7.4.5.2.8  Detecting Drive and Freewheel MOSFET
          9. 7.4.5.2.9  Automatic Duty Cycle Compensation (DCC)
          10. 7.4.5.2.10 Closed Loop Slew Time Control (STC)
            1. 7.4.5.2.10.1 STC Control Loop Setup
        3. 7.4.5.3 Tripler (Double-Stage) Charge Pump
        4. 7.4.5.4 Wide Common Mode Differential Current Shunt Amplifier
        5. 7.4.5.5 Gate Driver Protection Circuits
          1. 7.4.5.5.1 MOSFET VDS Overcurrent Protection (VDS_OCP)
          2. 7.4.5.5.2 Gate Driver Fault (VGS_GDF)
          3. 7.4.5.5.3 Offline Short Circuit and Open Load Detection (OOL and OSC)
      6. 7.4.6 Sense Output (IPROPI)
      7. 7.4.7 Protection Circuits
        1. 7.4.7.1 Fault Reset (CLR_FLT)
        2. 7.4.7.2 DVDD Logic Supply Power on Reset (DVDD_POR)
        3. 7.4.7.3 PVDD Supply Undervoltage Monitor (PVDD_UV)
        4. 7.4.7.4 PVDD Supply Overvoltage Monitor (PVDD_OV)
        5. 7.4.7.5 VCP Charge Pump Undervoltage Lockout (VCP_UV)
        6. 7.4.7.6 Thermal Clusters
        7. 7.4.7.7 Watchdog Timer
        8. 7.4.7.8 Fault Detection and Response Summary Table
    5. 7.5 Programming
      1. 7.5.1 SPI Interface
      2. 7.5.2 SPI Format
      3. 7.5.3 Timing Diagrams
  9. DRV8000-Q1 Register Map
  10. DRV8000-Q1_STATUS Registers
  11. 10DRV8000-Q1_CNFG Registers
  12. 11DRV8000-Q1_CTRL Registers
  13. 12Application and Implementation
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
    3. 12.3 Initialization Setup
    4. 12.4 Power Supply Recommendations
      1. 12.4.1 Bulk Capacitance Sizing
    5. 12.5 Layout
      1. 12.5.1 Layout Guidelines
      2. 12.5.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Support Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information
    1. 15.1 Package Option Addendum
    2. 15.2 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Package Option Addendum

Packaging Information

Orderable Device Status Package Type (1) Package Drawing Pins Package Qty Eco Plan(2) Lead/Ball Finish(6) MSL Peak Temp(3) Op Temp (°C) Device Marking(4)(5)
DRV8000QRGZRQ1 PREVIEW VQFN RGZ 48 2500 RoHS & Green NIPDAU Level-3-260-C-168-HR -40 to 125 PDRV8000
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.