JAJSSZ1 December   2023 DRV8334

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
    1. 5.1 Pin Functions 48-Pin DRV8334
  7. Specification
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings DRV8334
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information DRV8334
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 SPI Timing Diagrams
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Three BLDC Gate Drivers
        1. 7.3.1.1 PWM Control Modes
          1. 7.3.1.1.1 6x PWM Mode
          2. 7.3.1.1.2 3x PWM Mode with INLx enable control
          3. 7.3.1.1.3 3x PWM Mode with SPI enable control
          4. 7.3.1.1.4 1x PWM Mode
          5. 7.3.1.1.5 SPI Gate Drive Mode
        2. 7.3.1.2 Gate Drive Architecture
          1. 7.3.1.2.1 Bootstrap diode
          2. 7.3.1.2.2 GVDD Charge pump
          3. 7.3.1.2.3 VCP Trickle Charge pump
          4. 7.3.1.2.4 Gate Driver Output
          5. 7.3.1.2.5 Passive and Semi-active pull-down resistor
          6. 7.3.1.2.6 TDRIVE Gate Drive Timing Control
          7. 7.3.1.2.7 Propagation Delay
          8. 7.3.1.2.8 Deadtime and Cross-Conduction Prevention
      2. 7.3.2 Low-Side Current Sense Amplifiers
        1. 7.3.2.1 Unidirectional Current Sense Operation
        2. 7.3.2.2 Bidirectional Current Sense Operation
      3. 7.3.3 Gate Driver Shutdown
        1. 7.3.3.1 DRVOFF Gate Driver Shutdown
        2. 7.3.3.2 Gate Driver Shutdown Timing Sequence
      4. 7.3.4 Gate Driver Protective Circuits
        1. 7.3.4.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.4.2  GVDD Undervoltage Lockout (GVDD_UV)
        3. 7.3.4.3  BST Undervoltage Lockout (BST_UV)
        4. 7.3.4.4  MOSFET VDS Overcurrent Protection (VDS_OCP)
        5. 7.3.4.5  VSENSE Overcurrent Protection (SEN_OCP)
        6. 7.3.4.6  Phase Comparators
        7. 7.3.4.7  Thermal Shutdown (OTSD)
        8. 7.3.4.8  Thermal Warning (OTW)
        9. 7.3.4.9  OTP CRC
        10. 7.3.4.10 SPI Watchdog Timer
    4. 7.4 Device Functional Modes
      1. 7.4.1 Gate Driver Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
      2. 7.4.2 Device Power Up Sequence
    5. 7.5 Programming
      1. 7.5.1 SPI
      2. 7.5.2 SPI Format
      3. 7.5.3 SPI Format Diagrams
    6. 7.6 Register Maps
      1. 7.6.1 STATUS Registers
      2. 7.6.2 CONTROL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application with 48-pin package
        1. 8.2.1.1 External Components
      2. 8.2.2 Application Curves
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
1x PWM Mode

In 1x PWM mode, the device uses 6-step block commutation tables that are stored internally. This feature allows for a three-phase BLDC motor to be controlled using one PWM sourced from a simple controller. The PWM is applied on the INHA pin and determines the output frequency and duty cycle of the half-bridges.

The half-bridge output states are managed by the INLA, INHB, and INLB pins which are used as state logic inputs. The state inputs can be controlled by an external controller or connected directly to the digital outputs of the Hall effect sensor from the motor (INLA = HALL_A, INHB = HALL_B, INLB = HALL_C). The 1x PWM mode usually operates with synchronous rectification (low-side MOSFET recirculation).

The INHC input controls the direction through the 6-step commutation table which is used to change the direction of the motor when Hall effect sensors are directly controlling the state of the INLA, INHB, and INLB inputs. Tie the INHC pin low if this feature is not required.

The INLC input brakes the motor by turning off all high-side MOSFETs and turning on all low-side MOSFETs when the INLC pin is pulled low. This brake is independent of the state of the other input pins. Tie the INLC pin high if this feature is not required.

Table 7-4 Synchronous 1x PWM Mode
LOGIC AND HALL INPUTS GATE DRIVE OUTPUTS(1)
STATE INHC = 0 INHC = 1 PHASE A PHASE B PHASE C DESCRIPTION
INLA INHB INLB INLA INHB INLB GHA GLA GHB GLB GHC GLC
Stop 0 0 0 0 0 0 L L L L L L Stop
Align 1 1 1 1 1 1 PWM !PWM L H L H Align
1 1 1 0 0 0 1 L L PWM !PWM L H B → C
2 1 0 0 0 1 1 PWM !PWM L L L H A → C
3 1 0 1 0 1 0 PWM !PWM L H L L A → B
4 0 0 1 1 1 0 L L L H PWM !PWM C → B
5 0 1 1 1 0 0 L H L L PWM !PWM C → A
6 0 1 0 1 0 1 L H PWM !PWM L L B → A
!PWM is the inverse of the PWM signal.
Table 7-5 Asynchronous 1x PWM Mode 1PWM_COM = 1 (SPI Only)
LOGIC AND HALL INPUTS GATE DRIVE OUTPUTS
STATE INHC = 0 INHC = 1 PHASE A PHASE B PHASE C DESCRIPTION
INLA INHB INLB INLA INHB INLB GHA GLA GHB GLB GHC GLC
Stop 0 0 0 0 0 0 L L L L L L Stop
Align 1 1 1 1 1 1 PWM L L H L H Align
1 1 1 0 0 0 1 L L PWM L L H B → C
2 1 0 0 0 1 1 PWM L L L L H A → C
3 1 0 1 0 1 0 PWM L L H L L A → B
4 0 0 1 1 1 0 L L L H PWM L C → B
5 0 1 1 1 0 0 L H L L PWM L C → A
6 0 1 0 1 0 1 L H PWM L L L B → A

Figure 7-2 and Figure 7-3 show the different possible configurations in 1x PWM mode.

GUID-AB000245-C591-40A1-9EF9-B16661C25010-low.gif Figure 7-2 1x PWM—Simple Controller
GUID-9B26A256-7FDE-42CB-BBF2-E8A357654B2F-low.gif Figure 7-3 1x PWM—Hall Effect Sensor