JAJSSZ1 December 2023 DRV8334
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
POWER SUPPLIES (PVDD) | ||||||
IPVDDQ | PVDD sleep mode current | VPVDD = 12 V, nSLEEP = 0, TA = 25°C, IPVDDQ = PVDD + VDRAIN |
16 | 20 | µA | |
IPVDDQ | PVDD sleep mode current | VPVDD = 24 V, nSLEEP = 0, TA = 25°C, IPVDDQ = PVDD + VDRAIN |
16 | 30 | µA | |
IPVDDQ | PVDD sleep mode current | VPVDD = < 36V, nSLEEP = 0, TJ < 150C, IPVDDQ = PVDD + VDRAIN |
18 | 50 | µA | |
IPVDD | PVDD active mode current | VPVDD = 24 V, nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 24 V |
28 | 38 | mA | |
IPVDD | PVDD active mode current | VPVDD = 60 V, nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b |
50 | mA | ||
IPVDD | PVDD active mode current | VPVDD = 24 V, nSLEEP = HIGH, INHx = INLX = Switching@20kHz, No FETs connected, IPVDD = PVDD + VDRAIN |
25 | 40 | mA | |
IPVDD | PVDD active mode current | VPVDD = 60 V, nSLEEP = HIGH, INHx = INLX = Switching@20kHz. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b |
55 | mA | ||
tWAKE | Turn-on time | nSLEEP = Low to High; nFAULT goes High. |
1 | 5 | ms | |
LOGIC-LEVEL INPUTS (INHx, INLx, nSLEEP etc) | ||||||
VIL | Input logic low voltage | 0.8 | V | |||
VIH | Input logic high voltage | 2.1 | V | |||
VHYS | Input hysteresis | 200 | 330 | 450 | mV | |
VIL | DRVOFF Input logic low voltage | DRVOFF |
0.65 | V | ||
VIH | DRVOFF Input logic high voltage | DRVOFF | 2.1 | V | ||
VHYS | DRVOFF Input hysteresis | DRVOFF | 200 | 400 | 600 | mV |
RPD | Input pulldown resistance | To GND; INHx, INLx, SCLK, SDI | 50 | 100 | 150 | kΩ |
RPD | Input pulldown resistance | nSLEEP, DRVOFF | 460 | 800 | 1700 | kΩ |
IIL | Input logic low current | VI = 0 V; nSCS (internal pull up); VIO = 3.3V | 11 | 33 | 66 | µA |
IIL | Input logic low current | VI = 0 V; nSCS (internal pull up); VIO = 5V | 25 | 50 | 100 | µA |
IIH | Input logic high current | VI = 5 V, INHx/INLx/SDI/SCLK | 30 | 50 | 70 | µA |
VIH | nSleep Input logic high voltage | 2.1 | V | |||
VIL | nSleep Input logic low voltage | 0.8 | V | |||
VHYST | nSleep Input logic hysteresis | 0.1 | V | |||
LOGIC-LEVEL OUTPUTS (nFAULT, SDO, PHCx) | ||||||
VOL | Output logic low voltage | IDOUT = 1 mA, PHCOMP | 0.5 | V | ||
VOL | Output logic low voltage | IDOUT = 1 mA, SDO | 0.5 | V | ||
VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 3.3V mode | 2.7 | 3.3 | 3.6 | V |
VOH | Output logic high voltage | IDOUT = 1 mA, PHCOMP, 5V mode; VPVDD ≥ 4.5V | 4.0 | 5 | 5.5 | V |
VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 5V mode; VPVDD ≥ 4.5V | 4.0 | 5 | 5.5 | V |
VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 5V mode; 4V ≤VPVDD < 4.5V | 3.6 | 3.8 | 4.5 | V |
IOZ | Output logic high current | nFAULT : Force nFAULT = 5 V, no fault event, nSLEEP = High SDO : Force VSDO = 5V, nSCS = High or nSLEEP = Low |
–12 | 25 | µA | |
IOZ | Output logic high current | SDO : Force VSDO = 0V, nSCS = High or nSLEEP = Low | –12 | 10 | µA | |
CHARGE PUMP (GVDD, VCP) | ||||||
VGVDD | GVDD Gate driver regulator voltage (LDO mode) | 22 V ≤VPVDD ; IGS ≤50 mA | 11.5 | 13.5 | V | |
18 V ≤VPVDD ≤ 22 V; IGS ≤ 50 mA | 11.5 | 13.5 | V | |||
GVDD Gate driver regulator voltage (Charge pump mode) | 7.2 V ≤VPVDD ≤ 18 V; IGS = 50 mA ; IVCP = 5mV | 11.5 | 13.5 | V | ||
6.5 V ≤VPVDD ≤ 7.2 V; IGS ≤ 20 mA; IVCP = 3mA DIS_GVDD_SS = 1b |
11.5 | 13.5 | V | |||
5 V ≤VPVDD ≤ 6.5 V; IGS ≤ 20 mA; IVCP = 3mA DIS_GVDD_SS = 1b |
9 | 13 | V | |||
4.5 V ≤VPVDD ≤ 5 V; IGS ≤ 20 mA, IVCP = 3mA; DIS_GVDD_SS = 1b |
8 | 10 | V | |||
VVCP | VCP charge pump voltage (with respect to VDRAIN) | VVCP = V(VCP - VDRAIN; 13.5 ≥ GVDD ≥ 11 V; VDRAIN > 4.5V; IVCP 5 mA; |
9.8 | 13.5 | V | |
VVCP = V(VCP - VDRAIN) ; 9V ≤ GVDD < 11V; VDRAIN > 4.5V; IVCP = 3 mA; |
8.4 | 11 | ||||
VVCP = V(VCP - VDRAIN) ; 8V ≤ GVDD < 9V; VDRAIN > 4.5V; IVCP = 3 mA; |
7.4 | 9 | ||||
tBST_PRECHG | VCP charge pump bootstrap cap pre-charge time | VBST-SHX = 5V ;INHx = INLx = Low. Tj = 150C, IVCP = 3mA; CVCP = 1.5uF; CBST = 1.5uF (each phase), CVCP_FLY = 1uF; VPVDD = 4.5V |
1.7 | 3 | ms | |
VBST_TCPOFF | BST monitor voltage for VCP to stop charging the BST cap (rising voltage) | INLx = 0; SHx = 0, VDRAIN; VDRAIN = PVDD = 12V, 60V; | 12.0 | 13.2 | 14.6 | V |
BOOTSTRAP DIODES | ||||||
VBOOTD | Bootstrap diode forward voltage | IBOOT = 100 µA. | 0.85 | V | ||
IBOOT = 10 mA. | 1 | V | ||||
IBOOT = 100 mA. | 1.6 | V | ||||
RBOOTD | Bootstrap dynamic resistance (ΔVBOOTD/ΔIBOOT) | IBOOT = 100 mA and 50 mA. | 5.5 | Ω | ||
GATE DRIVERS (GHx, GLx, SHx, SLx) | ||||||
VGL_L | Low-side Low-level output voltage | IGLx = 10mA, GLx - SLx; IDRVN = 100100b: IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
VGL_H | Low-side High-level output voltage | IGLx = 10mA, GVDD - GLx ; IDRVP = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
VGH_L | High-side Low-level output voltage | IGHx = 10mA, GHx - SHx; IDRVN = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
VGH_H | High-side High-level output voltage | IGHx = 10mA, BSTx - GHx; IDRVP = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
RPDSA_LS | Low side semi active pull down resistor | GLx to SLx; nSLEEP = Low, VGLx - VSLx = 2V, GVDD (BSTx-SHx) > 2V | 2 | 3 | 4.3 | kΩ |
RPDSA_HS | High side semi active pull down resistor | GHx to SHx; nSLEEP = Low, VGHx - VSHx = 2V, GVDD (BSTx-SHx) > 2V | 7 | 9 | 12 | kΩ |
IDRVN | Peak sink gate current | IDRVN=000000b; VGSx = 5V; BST-SHx = GVDD = 12V | 0.75 | mA | ||
IDRVN=000001b; VGSx = 5V; BST-SHx = GVDD = 12V | 1.1 | |||||
IDRVN=000010b; VGSx = 5V; BST-SHx = GVDD = 12V | 1.5 | |||||
IDRVN=000011b; VGSx = 5V; BST-SHx = GVDD = 12V | 1.9 | |||||
IDRVN=000100b; VGSx = 5V; BST-SHx = GVDD = 12V | 2.3 | |||||
IDRVN=000101b; VGSx = 5V; BST-SHx = GVDD = 12V | 2.8 | |||||
IDRVN=000110b; VGSx = 5V; BST-SHx = GVDD = 12V | 3.4 | |||||
IDRVN=000111b; VGSx = 5V; BST-SHx = GVDD = 12V | 3.9 | |||||
IDRVN=001000b; VGSx = 5V; BST-SHx = GVDD = 12V | 4.4 | |||||
IDRVN=001001b; VGSx = 5V; BST-SHx = GVDD = 12V | 5.3 | |||||
IDRVN=001010b; VGSx = 5V; BST-SHx = GVDD = 12V | 6.3 | |||||
IDRVN=001011b; VGSx = 5V; BST-SHx = GVDD = 12V | 7.2 | |||||
IDRVN=001100b; VGSx = 5V; BST-SHx = GVDD = 12V | 8.1 | |||||
IDRVN=001101b; VGSx = 5V; BST-SHx = GVDD = 12V | 10 | |||||
IDRVN=001110b; VGSx = 5V; BST-SHx = GVDD = 12V | 11 | |||||
IDRVN=001111b; VGSx = 5V; BST-SHx = GVDD = 12V | 13 | |||||
IDRVN=010000b; VGSx = 5V; BST-SHx = GVDD = 12V | 14 | |||||
IDRVN=010001b; VGSx = 5V; BST-SHx = GVDD = 12V | 16 | |||||
IDRVN=010010b; VGSx = 5V; BST-SHx = GVDD = 12V | 18 | |||||
IDRVN=010011b; VGSx = 5V; BST-SHx = GVDD = 12V | 21 | |||||
IDRVN=010100b; VGSx = 5V; BST-SHx = GVDD = 12V | 25 | |||||
IDRVN=010101b; VGSx = 5V; BST-SHx = GVDD = 12V | 29 | |||||
IDRVN | Peak sink gate current | IDRVN=010110b; VGSx = 5V; BST-SHx = GVDD = 12V | 33 | mA | ||
IDRVN=010111b; VGSx = 5V; BST-SHx = GVDD = 12V | 38 | |||||
IDRVN=011000b; VGSx = 5V; BST-SHx = GVDD = 12V | 44 | |||||
IDRVN=011001b; VGSx = 5V; BST-SHx = GVDD = 12V | 49 | |||||
IDRVN=011010b; VGSx = 5V; BST-SHx = GVDD = 12V | 68 | |||||
IDRVN=011011b; VGSx = 5V; BST-SHx = GVDD = 12V | 79 | |||||
IDRVN=011100b; VGSx = 5V; BST-SHx = GVDD = 12V | 88 | |||||
IDRVN=011101b; VGSx = 5V; BST-SHx = GVDD = 12V | 106 | |||||
IDRVN=011110b; VGSx = 5V; BST-SHx = GVDD = 12V | 125 | |||||
IDRVN=011111b; VGSx = 5V; BST-SHx = GVDD = 12V | 144 | |||||
IDRVN=100000b; VGSx = 5V; BST-SHx = GVDD = 12V | 163 | |||||
IDRVN=100001b; VGSx = 5V; BST-SHx = GVDD = 12V | 191 | |||||
IDRVN=100010b; VGSx = 5V; BST-SHx = GVDD = 12V | 219 | |||||
IDRVN=100011b; VGSx = 5V; BST-SHx = GVDD = 12V | 247 | |||||
IDRVP | Peak source gate current | IDRV_CFG = 0b; IDRV_RATIO = 00b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
1*IDRVN | mA | ||
IDRV_CFG = 0b; IDRV_RATIO = 01b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.75*IDRVN | mA | ||||
IDRV_CFG = 0b; IDRV_RATIO = 10b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.5*IDRVN | mA | ||||
IDRV_CFG = 0b; IDRV_RATIO = 11b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.25*IDRVN | mA | ||||
IDRVN_VAR | Peak sink gate current variation | IDRVN=000000b - 011001b | -50 | +50 | % | |
IDRVP_VAR | Peak source gate current variation | IDRVN=011010b - 100011b | -50 | +80 | % | |
IDRVN | Peak sink gate current - switch mode | IDRVN=100100b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 400 | 600 | 980 | mA |
IDRVN=100101b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 480 | 695 | 1020 | mA | ||
IDRVN=100110b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 560 | 795 | 1060 | mA | ||
IDRVN=100111b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 640 | 925 | 1240 | mA | ||
IDRVN=101000b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 760 | 1090 | 1440 | mA | ||
IDRVN=101001b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 880 | 1255 | 1660 | mA | ||
IDRVN=101010b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 1020 | 1455 | 1920 | mA | ||
IDRVN=101011b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 1080 | 1685 | 2500 | mA | ||
IDRVN=101100b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. | 1080 | 2000 | 2600 | mA | ||
IDRVP |
Peak source gate current - switch mode | IDRVP=100100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 150 | 300 | 450 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=100101b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 177 | 355 | 533 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=100110b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 205 | 410 | 615 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=100111b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 237 | 475 | 713 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=101000b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 280 | 560 | 840 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=101001b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 322 | 645 | 968 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=101010b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 375 | 750 | 1125 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=101011b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 432 | 865 | 1298 | mA |
IDRVP |
Peak source gate current - switch mode | IDRVP=101100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 507 | 1015 | 1523 | mA |
IHOLD_PU | Gate pull up hold current | IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. | 150 | 250 | 400 | mA |
IHOLD_PU | Gate pull up hold current | IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. | 330 | 560 | 900 | mA |
IHOLD_PD | Gate pull down hold current | IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. | 140 | 267 | 480 | mA |
IHOLD_PD | Gate pull down hold current | IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. | 580 | 1100 | 1500 | mA |
ISTRONG | Gate pull down strong current | GHx-SHx = 12V (High side) or GLx = 12V (Low Side); BST-SHx = GVDD = 12V. | 1000 | 2000 | 2800 | mA |
GATE DRIVER TIMINGS (GHx, GLx) | ||||||
tPD | Input to output propagation delay GHx/GLx falling | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx ≥ 8V | 55 | 150 | ns | |
tPD | Input to output propagation delay GHx/GLx falling | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 011101b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx ≥ 8V | 75 | 150 | ns | |
tPD | Input to output propagation delay GHx/GLx rising | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V | 55 | 150 | ns | |
tPD | Input to output propagation delay GHx/GLx rising | INHx, INLx to GHx, GLx.IDRVN = IDRVP = 011101b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V | 70 | 150 | ns | |
tPD_match | Matching propagation delay per phase | GHx turning OFF to GLx turning ON, GLx turning OFF to GHx turning ON; VGVDD = VBSTx-SHx ≥ 8V | –150 | 10 | 150 | ns |
tPD_match | Matching propagation delay phase to phase | GHx/GLx turning ON to GHy/GLy turning ON, GHx/GLx turning OFF to GHy/GLy turning OFF; VGVDD = VBSTx-SHx ≥ 8V | –50 | 10 | 50 | ns |
tDRIVE | Peak current gate drive time | Typical value.TDRVP (TDRVN) = 0000b - 1111b. Refer to register map TDRNP and TDRVN. | 140 | 3815 | ns | |
tDRIVE_V | Peak current gate drive time variation | With respect to typical value.TDRVP (TDRVN) = 0000b - 1111b | -20 | 20 | % | |
tDEAD | Digital Gate drive dead time | DEADTIME = 000b; | 30 | 70 | 130 | ns |
DEADTIME = 001b; | 170 | 214 | 300 | ns | ||
DEADTIME = 010b | 230 | 286 | 380 | ns | ||
DEADTIME = 011b | 420 | 500 | 640 | ns | ||
DEADTIME = 100b | 640 | 750 | 930 | ns | ||
DEADTIME = 101b | 880 | 1000 | 1280 | ns | ||
DEADTIME = 110b | 1270 | 1500 | 1820 | ns | ||
DEADTIME = 111b | 1700 | 2000 | 2400 | ns | ||
CURRENT SHUNT AMPLIFIERS (SNx, SOx, SPx, VREF) | ||||||
ACSA | Sense amplifier gain | CSAGAIN = 0000b | 5 | V/V | ||
CSAGAIN = 0001b; | 10 | V/V | ||||
CSAGAIN = 0010b | 12 | V/V | ||||
CSAGAIN = 0011b | 16 | V/V | ||||
CSAGAIN = 0100b | 20 | V/V | ||||
CSAGAIN = 0101b | 23 | V/V | ||||
CSAGAIN = 0110b | 25 | V/V | ||||
CSAGAIN = 0111b | 30 | V/V | ||||
CSAGAIN = 1000b | 40 | V/V | ||||
EACSA | Sense amplifier gain error | All CSAGAIN setting VGVDD > 7.2V (this GVDD condition is applied to all CSA items) |
-0.5 | 0.5 | % | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 5 V/V, RSO = 160Ω, CSO = 470pF ; VREF = 5V/3V |
0.6 | 1.35 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 10 V/V, CLOAD = 470pF |
0.65 | 1.35 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 20 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V/3V |
0.7 | 1.35 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V | 0.7 | 1.35 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V | 0.7 | 1.6 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V | 0.7 | 1.7 | µs | |
tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V | 0.7 | 1.75 | µs | |
UGB | Unity Gain Bandwidth | CLOAD = 470pF; closed loop, BW @ unity gain | 10 | MHz | ||
BW | Bandwidth | closed loop, -3db, no output load | 1 | MHz | ||
VSWING | Output voltage range | VVREF = 3 to 5.5 V | 0.25 | VVREF - 0.25 | V | |
VCOM | Common-mode input range | VCOM = (VSP + VSN) / 2 | -2 | 2 | V | |
tcom_rec | Common-mode transient recovery timing | VCOM = -15V to 0V | 2.2 | µs | ||
VDIFF | Differential-mode input range | -0.3 | 0.3 | V | ||
VOFF | Input offset voltage total | VSP = VSN = GND; Initial offset + Offset drift |
–0.65 | 0.65 | mV | |
VOFF_DRIFT | Input drift offset voltage | VSP = VSN = GND; temperature drift + aging |
–0.2 | 0.2 | mV | |
IBIAS | Input bias current | VSP = VSN = GND. CSA and SENSE_OCP total | 20 | 100 | µA | |
IBIAS_OFF | Input bias current offset | ISP – ISN. CSA and SENSE_OCP total | -1 | 1 | µA | |
IVREF | Reference input current | VCSAREF = 3.3 V | 3 | 6 | 9.25 | mA |
VCSAREF = 5 V | 4 | 7 | 9.5 | mA | ||
CMRR | DC Common-mode rejection ratio | SN/SP = -2V to 2V | 60 | 90 | dB | |
CMRR | Transient Common-mode rejection ratio | 20KHz | 60 | 90 | dB | |
PSRR | Power-supply rejection ratio | 100 | dB | |||
Temperature Reporting | ||||||
SUPPLY VOLTAGE MONITORS | ||||||
VPVDD_UV | PVDD undervoltage lockout threshold | VPVDD rising | 4.5 | 4.65 | 4.8 | V |
VPVDD falling | 4.05 | 4.2 | 4.35 | |||
VPVDD_UV_HYS | PVDD undervoltage lockout hysteresis | Rising to falling threshold | 400 | 450 | 500 | mV |
tPVDD_UV_DG | PVDD undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VPVDD_UVW | PVDD undervoltage warning threshold | VPVDD rising; PVDD_UVW_LVL= 0b; | 6.0 | 7 | V | |
VPVDD falling; PVDD_ULW_LVL= 0b; | 5.8 | 6.8 | V | |||
VPVDD rising; PVDD_UVW_LVL = 1b; | 7.3 | 8.3 | V | |||
VPVDD falling; PVDD_UVW_LVL = 1b; | 7.1 | 8.1 | V | |||
VPVDD_UVW_HYS | PVDD undervoltage warning hysteresis | Rising to falling threshold | 140 | 200 | 260 | mV |
tPVDD_UVW_DG | PVDD undervoltage warning deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VPVDD_OV | PVDD overvoltage threshold | VPVDD rising, PVDD_OV_LVL = 00b | 28 | 31 | V | |
VPVDD falling, PVDD_OV_LVL = 00b | 27 | 30 | ||||
VPVDD rising, PVDD_OV_LVL = 01b | 33 | 36 | ||||
VPVDD falling, PVDD_OV_LVL = 01b | 32 | 35 | ||||
VPVDD rising, PVDD_OV_LVL = 10b | 50 | 55 | ||||
VPVDD falling, PVDD_OV_LVL = 10b | 47 | 52 | ||||
VPVDD_OV_HYS | PVDD overvoltage hysteresis | Rising to falling threshold PVDD_OV_LVL = 00b, 01b | 0.6 | 0.9 | 1.2 | V |
VPVDD_OV_HYS | PVDD overvoltage hysteresis | Rising to falling threshold PVDD_OV_LVL = 10b | 2.0 | 2.2 | 2.4 | V |
tPVDD_OV_DG | PVDD overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VGVDD_UV | GVDD undervoltage threshold | VGVDD rising - after power up | 7.0 | 7.8 | V | |
VGVDD rising - power up only | 7.5 | 8.1 | V | |||
VGVDD falling | 6.8 | 7.6 | V | |||
VGVDD_UV_HYS | GVDD undervoltage hysteresis | Rising to falling threshold | 185 | 215 | 245 | mV |
tGVDD_UV_DG | GVDD undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VGVDD_OV | GVDD overvoltage threshold | VGVDD rising | 15 | 17 | V | |
VGVDD_OV | GVDD overvoltage threshold | VGVDD falling | 14.5 | 16.5 | V | |
VGVDD_OV_HYS | GVDD overvoltage hysteresis | Rising to falling threshold | 490 | 560 | 620 | mV |
tGVDD_OV_DG | GVDD overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VBST_UV | Bootstrap undervoltage threshold | VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 1b | 6.3 | 7.4 | 8.5 | V |
VBST_UV | Bootstrap undervoltage threshold | VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 1b | 6.1 | 7.2 | 8.3 | V |
VBST_UV | Bootstrap undervoltage threshold | VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 0b | 3.8 | 4.4 | 5 | V |
VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 0b | 3.65 | 4.2 | 4.8 | V | ||
VBST_UV_HYS | Bootstrap undervoltage hysteresis | Rising to falling threshold BST_UV_LVL = 0b and 1b |
120 | 200 | 280 | mV |
tBST_UV_DG | Bootstrap undervoltage deglitch time | rising and falling edge | 4 | 5 | 8 | µs |
VBST_OV | Bootstrap overvoltage threshold | VBSTx- VSHx; VBSTx rising | 15.2 | 18 | V | |
VBST_OV | Bootstrap overvoltage threshold | VBSTx- VSHx; VBSTx falling | 15 | 17.8 | V | |
VBST_OV_HYS | Bootstrap overvoltage hysteresis | 130 | 200 | 260 | mV | |
tBST_OV_DG | Bootstrap overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VCP_UV | VCP undervoltage threshold | VCP - VDRAIN; rising | 6 | 6.7 | 7.4 | V |
VCP_UV | VCP undervoltage threshold | VCP - VDRAIN; falling | 5.7 | 6.4 | 7.1 | V |
tCP_UV_DG | VCP undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VCP_OV | VCP overvoltage threshold | VCP - VDRAIN; rising | 14 | 17.0 | V | |
VCP_OV | VCP overvoltage threshold | VCP - VDRAIN; falling | 13.8 | 16.7 | V | |
tCP_OV_DG | VCP overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VDRAIN_UV | VDRAIN undervoltage threshold | VVDRAIN rising | 4.25 | 4.35 | 4.45 | V |
VDRAIN_UV | VDRAIN undervoltage threshold | VVDRAIN falling | 4.05 | 4.15 | 4.25 | V |
VDRAIN_UV_HYS | VDRAIN undervoltage hysteresis | 170 | 190 | 210 | mV | |
tVDRAIN_UV_DG | VDRAIN undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
VDRAIN_OV | VDRAIN overvoltage threshold | VVDRAIN rising, VDRAIN_OV_LVL = 00b | 28 | 31 | V | |
VVDRAIN falling, VDRAIN_OV_LVL = 00b | 27 | 30 | V | |||
VVDRAIN rising, VDRAIN_OV_LVL = 01b | 33 | 36 | V | |||
VVDRAIN falling, VDRAIN_OV_LVL = 01b | 32 | 35 | V | |||
VVDRAIN rising, VDRAIN_OV_LVL = 10b, 11b | 50 | 55 | V | |||
VVDRAIN falling, VDRAIN_OV_LVL = 10b, 11b | 48 | 353 | V | |||
VDRAIN_OV_HYS | VDRAIN overvoltage hysteresis | Rising to falling threshold, VDRAIN_OV_LVL = 00b, 01b | 0.7 | 1.0 | 1.3 | V |
VDRAIN_OV_HYS | VDRAIN overvoltage hysteresis | Rising to falling threshold, VDRAIN_OV_LVL = 10b, 11b | 2.0 | 2.3 | 2.6 | V |
tVDRAIN_OV_DG | VDRAIN overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
PROTECTION CIRCUITS | ||||||
VGS_LVL_H | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=H; VGS_LVL = 1'b1 |
7 | 8.5 | V | |
VGS_LVL_H | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=H; VGS_LVL = 1'b0 |
5 | 6.3 | V | |
VGS_LVL_L | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=L | 1 | 2 | V | |
tGS_DG | VGS gate voltage monitor deglitch time | VGS_DG = 000b |
0.3 | 0.6 | 0.8 | µs |
VGS_DG = 001b | 0.6 | 1.0 | 1.3 | µs | ||
VGS_DG = 010b, | 1.1 | 1.5 | 1.9 | µs | ||
VGS_DG = 011b, VGS_DG = 1xxb | 1.6 | 2.0 | 2.5 | µs | ||
tGS_BLK | VGS gate voltage monitor blanking time | VGS_BLK = 000b | 1.7 | 2.25 | 2.9 | µs |
VGS_BLK = 001b | 2.4 | 3 | 3.6 | µs | ||
VGS_BLK = 010b | 4.0 | 5 | 5.8 | µs | ||
VGS_BLK = 011b | 5.9 | 7 | 8.2 | µs | ||
VGS_BLK = 100b, 101b, 110b, 111b | 8.6 | 10 | 11.9 | µs | ||
VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0000b; SLx = -0.2V to +2.0V. VDS_CM = 0b. | 0.04 | 0.06 | 0.085 | V |
VDS_LVL = 0001b; SLx = -0.2V to +2.0V. VDS_CM = 0b. | 0.06 | 0.08 | 0.11 | |||
VDS_LVL = 0010b; SLx = -0.3V to +2.0V. VDS_CM = 0b. |
0.075 | 0.10 | 0.13 | |||
VDS_LVL = 0011b; SLx = -0.3V to +2.0V. | 0.09 | 0.12 | 0.16 | |||
VDS_LVL = 0100b; SLx = -0.3V to +2.0V. | 0.13 | 0.16 | 0.20 | |||
VDS_LVL = 0101b; SLx = -0.3V to +2.0V. | 0.2 | 0.24 | 0.29 | |||
VDS_LVL = 0110b; SLx = -0.3V to +2.0V. | 0.27 | 0.32 | 0.385 | |||
VDS_LVL = 0111b; SLx = -0.3V to +2.0V. | 0.35 | 0.4 | 0.48 | |||
VDS_LVL = 1000b; SLx = -0.3V to +2.0V. | 0.44 | 0.5 | 0.58 | |||
VDS_LVL = 1001b; SLx = -0.3V to +2.0V. | 0.59 | 0.67 | 0.77 | |||
VDS_LVL = 1010b; SLx = -0.3V to +2.0V. | 0.75 | 0.83 | 0.96 | |||
VDS_LVL = 1011b; SLx = -0.3V to +2.0V. | 0.90 | 1 | 1.15 | |||
VDS_LVL = 1100b; SLx = -0.3V to +2.0V. | 1.13 | 1.25 | 1.42 | |||
VDS_LVL = 1101b; SLx = -0.3V to +2.0V. | 1.36 | 1.5 | 1.70 | |||
VDS_LVL = 1110b;SLx = -0.3V to +2.0V. | 1.58 | 1.75 | 1.98 | |||
VDS_LVL = 1111b;SLx = -0.3V to +2.0V. | 1.81 | 2 | 2.26 | |||
tDS_CMP | VDS comparator delay | VDS (comparator input voltage) from 0V to max of VDS_LVL (comparator output rising), delay time of internal comparator. | 0.5 | 1.0 | µs | |
tDS_CMP | VDS comparator delay | VDS (comparator input voltage) from VDRAIN to min of VDS_LVL (comparator output falling), delay time of internal comparator. | 1.0 | 1.6 | µs | |
tDS_DG | VDS overcurrent deglitch | VDS_DG = 000b |
0.3 | 0.5 | 0.8 | µs |
VDS_DG = 001b | 0.7 | 1 | 1.3 | |||
VDS_DG = 010b | 1.2 | 1.5 | 2.0 | |||
VDS_DG = 011b | 1.5 | 2 | 2.5 | |||
VDS_DG = 100b | 3.3 | 4 | 4.8 | |||
VDS_DG = 101b | 5.2 | 6 | 7.3 | |||
VDS_DG = 110b, 111b | 6.8 | 8 | 9.2 | |||
tDS_BLK | VDS overcurrent blanking time | VDS_BLK = 000b | 0 | 0.2 | µs | |
VDS_BLK = 001b | 0.4 | 0.5 | 0.7 | |||
VDS_BLK = 010b | 0.7 | 1 | 1.5 | |||
VDS_BLK = 011b | 1.4 | 2 | 2.6 | |||
VDS_BLK = 100b | 5.0 | 6 | 7.2 | |||
VDS_BLK = 101b | 6.8 | 8 | 9.4 | |||
VDS_BLK = 110b | 8.4 | 10 | 11.9 | |||
VDS_BLK = 111b | 10.1 | 12 | 13.9 | |||
VSENSE_LVL | VSENSE overcurrent threshold | SNS_OCP_LVL = 000b : Input common mode voltage +/-2V | 37 | 50 | 58 | mV |
SNS_OCP_LVL = 001b : Input common mode voltage +/-2V | 62 | 75 | 84 | |||
SNS_OCP_LVL = 010b : Input common mode voltage +/-2V | 87 | 100 | 110 | |||
SNS_OCP_LVL = 011b : Input common mode voltage +/-2V | 112 | 125 | 135 | |||
SNS_OCP_LVL = 100b : Input common mode voltage +/-2V | 135 | 150 | 165 | |||
SNS_OCP_LVL = 101b : Input common mode voltage +/-2V | 185 | 200 | 215 | |||
SNS_OCP_LVL = 110b : Input common mode voltage +/-2V | 280 | 300 | 320 | |||
SNS_OCP_LVL = 111b : Input common mode voltage +/-2V | 475 | 500 | 525 | |||
tSENSE_DG | VSENSE overcurrent deglitch time | SNS_OCP_DG = 00b | 1.5 | 2.0 | 2.5 | µs |
SNS_OCP_DG = 01b | 3.0 | 4.0 | 5.0 | |||
SNS_OCP_DG = 10b | 4.5 | 6.0 | 7.5 | |||
SNS_OCP_DG = 11b | 8 | 10.0 | 12 | |||
VPHC_H | Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 0b | 0.6 | 0.75 | 0.9 | |
VPHC_H | Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 1b | 0.37 | 0.52 | 0.67 | |
VPHC_L | Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 0b | 0.10 | 0.25 | 0.40 | |
VPHC_L | Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 1b | 0.33 | 0.48 | 0.63 | |
tPHC_PD_HL | Phase comparator propagation delay | Propagation delay of phase comparator High to Low from SHx to PHCx, Cload=20pF; SHx input test condition 60V – 0V / 10ns (design target), From SHx = 88% to 15% of VDRAIN |
1.5 | µs | ||
tPHC_PD_LH | Phase comparator propagation delay | Propagation delay of phase comparator Low to High from SHx to PHCx, Cload=20pF; SHx input test condition 0V – 60V / 10 ns (design target), From SHx = 15% to 88% of VDRAIN |
1.5 | µs | ||
tPHC_OUT_DEG | Phase comparator output deglitch time | PHCOUT_DG_SEL = 1 | 0.8 | 1.0 | 1.4 | µs |
TOTW | Thermal warning temperature | TJ rising, OT_LVL = 0b; | 125 | 150 | °C | |
TOTW_HYS | Thermal warning hysteresis | 15 | 22 | 25 | °C | |
tOTW_DEG | Thermal warning deglitch | 8 | 12 | 16 | µs | |
TOTSD | Thermal shutdown temperature | TJ rising | 155 | 180 | °C | |
TOTSD_HYS | Thermal shutdown hysteresis | 16 | 23 | 27 | °C | |
tOTSD_DEG | Thermal shutdown deglitch | 8 | 12 | 16 | µs | |
tDRVN_SD | Gate Drive Shutdown Sequence time | 20 | µs |