JAJSFY1A August   2018  – June  2019 DRV8350 , DRV8350R , DRV8353 , DRV8353R

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     概略回路図
  4. 改訂履歴
  5. 概要(続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions—32-Pin DRV8350 Devices
    2.     Pin Functions—48-Pin DRV8350R Devices
    3.     Pin Functions—40-Pin DRV8353 Devices
    4.     Pin Functions—48-Pin DRV8353R Devices
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 SPI Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Three Phase Smart Gate Drivers
        1. 9.3.1.1 PWM Control Modes
          1. 9.3.1.1.1 6x PWM Mode (PWM_MODE = 00b or MODE Pin Tied to AGND)
          2. 9.3.1.1.2 3x PWM Mode (PWM_MODE = 01b or MODE Pin = 47 kΩ to AGND)
          3. 9.3.1.1.3 1x PWM Mode (PWM_MODE = 10b or MODE Pin = Hi-Z)
          4. 9.3.1.1.4 Independent PWM Mode (PWM_MODE = 11b or MODE Pin Tied to DVDD)
        2. 9.3.1.2 Device Interface Modes
          1. 9.3.1.2.1 Serial Peripheral Interface (SPI)
          2. 9.3.1.2.2 Hardware Interface
        3. 9.3.1.3 Gate Driver Voltage Supplies and Input Supply Configurations
        4. 9.3.1.4 Smart Gate Drive Architecture
          1. 9.3.1.4.1 IDRIVE: MOSFET Slew-Rate Control
          2. 9.3.1.4.2 TDRIVE: MOSFET Gate Drive Control
          3. 9.3.1.4.3 Propagation Delay
          4. 9.3.1.4.4 MOSFET VDS Monitors
          5. 9.3.1.4.5 VDRAIN Sense and Reference Pin
      2. 9.3.2 DVDD Linear Voltage Regulator
      3. 9.3.3 Pin Diagrams
      4. 9.3.4 Low-Side Current-Shunt Amplifiers (DRV8353 and DRV8353R Only)
        1. 9.3.4.1 Bidirectional Current Sense Operation
        2. 9.3.4.2 Unidirectional Current Sense Operation (SPI only)
        3. 9.3.4.3 Amplifier Calibration Modes
        4. 9.3.4.4 MOSFET VDS Sense Mode (SPI Only)
      5. 9.3.5 Step-Down Buck Regulator
        1. 9.3.5.1 Functional Block Diagram
        2. 9.3.5.2 Feature Description
          1. 9.3.5.2.1 Control Circuit Overview
          2. 9.3.5.2.2 Start-Up Regulator (VCC)
          3. 9.3.5.2.3 Regulation Comparator
          4. 9.3.5.2.4 Overvoltage Comparator
          5. 9.3.5.2.5 On-Time Generator and Shutdown
          6. 9.3.5.2.6 Current Limit
          7. 9.3.5.2.7 N-Channel Buck Switch and Driver
          8. 9.3.5.2.8 Thermal Protection
      6. 9.3.6 Gate Driver Protective Circuits
        1. 9.3.6.1 VM Supply and VDRAIN Undervoltage Lockout (UVLO)
        2. 9.3.6.2 VCP Charge-Pump and VGLS Regulator Undervoltage Lockout (GDUV)
        3. 9.3.6.3 MOSFET VDS Overcurrent Protection (VDS_OCP)
          1. 9.3.6.3.1 VDS Latched Shutdown (OCP_MODE = 00b)
          2. 9.3.6.3.2 VDS Automatic Retry (OCP_MODE = 01b)
          3. 9.3.6.3.3 VDS Report Only (OCP_MODE = 10b)
          4. 9.3.6.3.4 VDS Disabled (OCP_MODE = 11b)
        4. 9.3.6.4 VSENSE Overcurrent Protection (SEN_OCP)
          1. 9.3.6.4.1 VSENSE Latched Shutdown (OCP_MODE = 00b)
          2. 9.3.6.4.2 VSENSE Automatic Retry (OCP_MODE = 01b)
          3. 9.3.6.4.3 VSENSE Report Only (OCP_MODE = 10b)
          4. 9.3.6.4.4 VSENSE Disabled (OCP_MODE = 11b or DIS_SEN = 1b)
        5. 9.3.6.5 Gate Driver Fault (GDF)
        6. 9.3.6.6 Overcurrent Soft Shutdown (OCP Soft)
        7. 9.3.6.7 Thermal Warning (OTW)
        8. 9.3.6.8 Thermal Shutdown (OTSD)
        9. 9.3.6.9 Fault Response Table
    4. 9.4 Device Functional Modes
      1. 9.4.1 Gate Driver Functional Modes
        1. 9.4.1.1 Sleep Mode
        2. 9.4.1.2 Operating Mode
        3. 9.4.1.3 Fault Reset (CLR_FLT or ENABLE Reset Pulse)
      2. 9.4.2 Buck Regulator Functional Modes
        1. 9.4.2.1 Shutdown Mode
        2. 9.4.2.2 Active Mode
    5. 9.5 Programming
      1. 9.5.1 SPI Communication
        1. 9.5.1.1 SPI
          1. 9.5.1.1.1 SPI Format
    6. 9.6 Register Maps
      1. 9.6.1 Status Registers
        1. 9.6.1.1 Fault Status Register 1 (address = 0x00h)
          1. Table 11. Fault Status Register 1 Field Descriptions
        2. 9.6.1.2 Fault Status Register 2 (address = 0x01h)
          1. Table 12. Fault Status Register 2 Field Descriptions
      2. 9.6.2 Control Registers
        1. 9.6.2.1 Driver Control Register (address = 0x02h)
          1. Table 14. Driver Control Field Descriptions
        2. 9.6.2.2 Gate Drive HS Register (address = 0x03h)
          1. Table 15. Gate Drive HS Field Descriptions
        3. 9.6.2.3 Gate Drive LS Register (address = 0x04h)
          1. Table 16. Gate Drive LS Register Field Descriptions
        4. 9.6.2.4 OCP Control Register (address = 0x05h)
          1. Table 17. OCP Control Field Descriptions
        5. 9.6.2.5 CSA Control Register (DRV8353 and DRV8353R Only) (address = 0x06h)
          1. Table 18. CSA Control Field Descriptions
        6. 9.6.2.6 Driver Configuration Register (DRV8353 and DRV8353R Only) (address = 0x07h)
          1. Table 19. Driver Configuration Field Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Primary Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 External MOSFET Support
            1. 10.2.1.2.1.1 MOSFET Example
          2. 10.2.1.2.2 IDRIVE Configuration
            1. 10.2.1.2.2.1 IDRIVE Example
          3. 10.2.1.2.3 VDS Overcurrent Monitor Configuration
            1. 10.2.1.2.3.1 VDS Overcurrent Example
          4. 10.2.1.2.4 Sense-Amplifier Bidirectional Configuration (DRV8353 and DRV8353R)
            1. 10.2.1.2.4.1 Sense-Amplifier Example
          5. 10.2.1.2.5 Single Supply Power Dissipation
          6. 10.2.1.2.6 Single Supply Power Dissipation Example
          7. 10.2.1.2.7 Buck Regulator Configuration (DRV8350R and DRV8353R)
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Alternative Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Sense Amplifier Unidirectional Configuration
            1. 10.2.2.2.1.1 Sense-Amplifier Example
            2. 10.2.2.2.1.2 Dual Supply Power Dissipation
            3. 10.2.2.2.1.3 Dual Supply Power Dissipation Example
  11. 11Power Supply Recommendations
    1. 11.1 Bulk Capacitance Sizing
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Buck-Regulator Layout Guidelines
    2. 12.2 Layout Example
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 デバイス・サポート
      1. 13.1.1 デバイスの項目表記
    2. 13.2 ドキュメントのサポート
      1. 13.2.1 関連資料
    3. 13.3 関連リンク
    4. 13.4 ドキュメントの更新通知を受け取る方法
    5. 13.5 コミュニティ・リソース
    6. 13.6 商標
    7. 13.7 静電気放電に関する注意事項
    8. 13.8 Glossary
  14. 14メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Dual Supply Power Dissipation

Design care must be taken to make sure that the thermal ratings of the DRV835x are not violated during normal operation of the device. The is especially critical in higher voltage and higher ambient operation applications where power dissipation or the device ambient temperature are increased.

To determine the temperature of the device in dual supply operation, first the internal power dissipation must be calculated. The internal power dissipation has four primary components:

  • VCP Charge pump power dissipation (PVCP)
  • VGLS low-side regulator power dissipation (PVGLS)
  • VM device nominal power dissipation (PVM)
  • VIN buck regulator power dissipation (PBUCK)

The value of PVCP and PVGLS can be approximated by referring to External MOSFET Support to first determine IVCP and IVGLS and then referring to Equation 45 and Equation 46.

Equation 45. PVCP = IVCP × (VVM + VVDRAIN)
Equation 46. PVGLS = IVGLS × VVM

The value of PVM can be calculated by referring to the datasheet parameter for IVM current and Equation 47.

Equation 47. PVM = IVM × VVM
Equation 48. PBUCK = (PO / η) – PO

where

    Equation 49. PO = VVCC × IVCC

The value of PBUCK can be calculated with the buck output voltage (VVCC), buck output current (IVCC), and by referring to the typical characteristic curve for efficiency (η) in the LM5008A data sheet.

The total power dissipation is then calculated by summing the four components as shown in Equation 50.

Equation 50. Ptot = PVCP + PVGLS + PVM + PBUCK

Lastly, the device junction temperature can be estimate by referring to the Thermal Information and Equation 51.

Equation 51. TJmax = TAmax + (RθJA × Ptot)

Note that the information in the Thermal Information is based off of a standardized test metric for package and PCB thermal dissipation. The actual values may vary based on the actual PCB design used in the application.