JAJSMM0C September   2022  – June 2024 DRV8411

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. デバイスの比較
  6. ピン構成および機能
  7. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 電気的特性
    6. 6.6 タイミング図
  8. 代表的特性
  9. 詳細説明
    1. 8.1 概要
    2. 8.2 機能ブロック図
    3. 8.3 外付け部品
    4. 8.4 機能説明
      1. 8.4.1 ブリッジの制御
        1. 8.4.1.1 並列ブリッジ インターフェイス
      2. 8.4.2 電流レギュレーション
      3. 8.4.3 保護回路
        1. 8.4.3.1 過電流保護 (OCP)
        2. 8.4.3.2 サーマル・シャットダウン (TSD)
        3. 8.4.3.3 低電圧誤動作防止 (UVLO)
    5. 8.5 デバイスの機能モード
      1. 8.5.1 アクティブ・モード
      2. 8.5.2 低消費電力スリープ・モード
      3. 8.5.3 フォルト・モード
    6. 8.6 ピン配置図
      1. 8.6.1 ロジックレベル入力
  10. アプリケーションと実装
    1. 9.1 アプリケーション情報
      1. 9.1.1 代表的なアプリケーション
        1. 9.1.1.1 ステッピング・モータ・アプリケーション
          1. 9.1.1.1.1 設計要件
          2. 9.1.1.1.2 詳細な設計手順
            1. 9.1.1.1.2.1 ステッピング・モータの速度
            2. 9.1.1.1.2.2 電流レギュレーション
            3. 9.1.1.1.2.3 ステッピング・モード
              1. 9.1.1.1.2.3.1 フル・ステッピング動作
              2. 9.1.1.1.2.3.2 ハーフ・ステッピング動作と高速減衰
              3. 9.1.1.1.2.3.3 ハーフ・ステッピング動作と低速減衰
          3. 9.1.1.1.3 アプリケーション曲線
        2. 9.1.1.2 デュアル BDC モータ・アプリケーション
          1. 9.1.1.2.1 設計要件
          2. 9.1.1.2.2 詳細な設計手順
            1. 9.1.1.2.2.1 モータ電圧
            2. 9.1.1.2.2.2 電流レギュレーション
            3. 9.1.1.2.2.3 センス抵抗
          3. 9.1.1.2.3 アプリケーション曲線
        3. 9.1.1.3 熱に関する注意事項
          1. 9.1.1.3.1 最大出力電流
          2. 9.1.1.3.2 消費電力
          3. 9.1.1.3.3 熱性能
            1. 9.1.1.3.3.1 定常状態熱性能
            2. 9.1.1.3.3.2 過渡熱性能
        4. 9.1.1.4 標準的なモータ・ドライバのピン配置によるマルチソーシング
    2. 9.2 電源に関する推奨事項
      1. 9.2.1 バルク容量
      2. 9.2.2 電源とロジックのシーケンシング
    3. 9.3 レイアウト
      1. 9.3.1 レイアウトのガイドライン
      2. 9.3.2 レイアウト例
  11. 10デバイスおよびドキュメントのサポート
    1. 10.1 ドキュメントのサポート
      1. 10.1.1 関連資料
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 コミュニティ・リソース
    4. 10.4 商標
  12. 11改訂履歴
  13. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PWP|16
  • RTE|16
サーマルパッド・メカニカル・データ
発注情報
センス抵抗

最適な性能を実現するには、センス抵抗は以下の条件を満たす必要があります。

  • 表面実装部品である
  • 低インダクタンス
  • 定格電力が十分に高い
  • モータ・ドライバに近づけて配置する

センス抵抗によって消費される電力は IRMS2 × R です。この例では、ピーク電流は 900mA、RMS モータ電流は 600mA、センス抵抗値は 200mΩ です。したがって、センス抵抗 (RSENSE12 および RSENSE34) は 72mW (600mA2 × 200mΩ = 72mW) を消費します。電流レベルが増加すると、電力は急速に大きくなります。

抵抗は、通常、ある範囲の周囲温度での定格電力が決まっていて、高い周囲温度については、ディレーティングした電力曲線があります。プリント基板 (PCB) を熱を発生させる他の部品と共有する場合は、マージンを追加する必要があります。ベスト・プラクティスとして、最終的なシステムの実際のセンス抵抗温度とパワー MOSFET を測定します。これは、これらの部品が最も高温になることが多いからです。

パワー抵抗は標準の抵抗より大きく高価であるため、一般的な方法は、複数の標準抵抗を並列に、センス・ノードとグランドの間で使用することです。この方法では、電流と放熱が分散されます。