JAJSM96 may   2023 DRV8849

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Indexer Timing Requirements
    7. 7.7 Typical Operating Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Stepper Motor Driver Current Ratings
        1. 8.3.1.1 Peak Current Rating
        2. 8.3.1.2 RMS Current Rating
        3. 8.3.1.3 Full-Scale Current Rating
      2. 8.3.2 Microstepping Indexer
      3. 8.3.3 Controlling VREF with an MCU DAC
      4. 8.3.4 Current Regulation and Decay Modes
        1. 8.3.4.1 Smart tune Ripple Control
        2. 8.3.4.2 Smart tune Dynamic Decay
        3. 8.3.4.3 Blanking time
      5. 8.3.5 Charge Pump
      6. 8.3.6 Logic Level, tri-level and quad-level Pin Diagrams
      7. 8.3.7 nFAULT Pins
      8. 8.3.8 Protection Circuits
        1. 8.3.8.1 VM Undervoltage Lockout (UVLO)
        2. 8.3.8.2 VCP Undervoltage Lockout (CPUV)
        3. 8.3.8.3 Overcurrent Protection (OCP)
          1. 8.3.8.3.1 Latched Shutdown
          2. 8.3.8.3.2 Automatic Retry
        4. 8.3.8.4 Thermal Shutdown (OTSD)
          1. 8.3.8.4.1 Latched Shutdown
          2. 8.3.8.4.2 Automatic Retry
        5. 8.3.8.5 Fault Condition Summary
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode (nSLEEP = 0)
      2. 8.4.2 Disable Mode (nSLEEP = 1, ENABLE = 0)
      3. 8.4.3 Operating Mode (nSLEEP = 1, ENABLE = Hi-Z/1)
      4. 8.4.4 nSLEEP Reset Pulse
      5. 8.4.5 Functional Modes Summary
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Stepper Motor Speed
        2. 9.2.2.2 Current Regulation
        3. 9.2.2.3 Decay Modes
        4. 9.2.2.4 Application Curves
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Bulk Capacitance
  12. 11デバイスおよびドキュメントのサポート
    1. 11.1 関連資料
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Current Regulation and Decay Modes

The current through the motor windings is regulated by an adjustable, off-time PWM current-regulation circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage, inductance of the winding, and the magnitude of the back EMF present. When the current hits the current regulation threshold (as shown in Figure 8-6, Item 1), the bridge enters a decay mode determined by the DECAY pin setting to decrease the current. After the off-time expires, the bridge is re-enabled, starting another PWM cycle.

GUID-20230424-SS0I-2996-DRLD-CNXXPX2HHQ3G-low.svgFigure 8-5 Current Chopping Waveform

Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay.

  • In fast decay mode, as soon as the PWM chopping current level is reached, the H-bridge reverses state by switching on the opposite arm MOSFETs to allow the winding current to flow in the opposite direction. As the winding current approaches zero, the H-bridge is disabled to prevent further reverse current flow. Fast decay mode is shown in Figure 8-6, item 2.

  • In slow decay mode, the winding current is re-circulated by enabling both low-side MOSFETs in the H-bridge. This is shown in Figure 8-6, Item 3.

GUID-20220628-SS0I-LCNN-KTBB-T7LTWVHPFPQK-low.svgFigure 8-6 Decay Modes

The PWM regulation current is set by a comparator which monitors the voltage across the current sense MOSFETs in parallel with the low-side power MOSFETs. The current sense MOSFETs are biased with a reference current that is the output of a current-mode sine-weighted DAC whose full-scale reference current is set by the voltage at the VREF pins.

The full-scale regulation current (IFS) can be calculated as -

IFS (A) = VREFx (V) / KV (V/A) = VREFx (V) / 2.2 (V/A).

The decay mode of the DRV8849 is selected by the DECAY pins as shown in Table 8-6. The decay modes can be changed on the fly. After a decay mode change, the new decay mode is applied after a 2 µs de-glitch time.

Table 8-6 Decay Mode Settings
DECAYxDECAY MODE
0Smart tune Ripple Control
1Smart tune Dynamic Decay, 16 μs OFF time
Hi-ZSmart tune Dynamic Decay, 32 μs OFF time

330k to GND

Smart tune Dynamic Decay, 8 μs OFF time