JAJSL44 March   2023 DRV8952

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. ピン構成および機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 電気的特性
    6. 6.6 代表的な特性
  7. 詳細説明
    1. 7.1  概要
    2. 7.2  機能ブロック図
    3. 7.3  機能説明
    4. 7.4  独立のハーフブリッジ動作
    5. 7.5  電流検出とレギュレーション
      1. 7.5.1 電流検出とフィードバック
      2. 7.5.2 外付け抵抗による電流検出
      3. 7.5.3 電流レギュレーション
    6. 7.6  チャージ・ポンプ
    7. 7.7  リニア電圧レギュレータ
    8. 7.8  VCC 電圧電源
    9. 7.9  ロジック・レベル・ピンの図
    10. 7.10 保護回路
      1. 7.10.1 VM 低電圧誤動作防止 (UVLO)
      2. 7.10.2 VCP 低電圧誤動作防止 (CPUV)
      3. 7.10.3 ロジック電源パワーオン・リセット (POR)
      4. 7.10.4 過電流保護 (OCP)
      5. 7.10.5 サーマル・シャットダウン (OTSD)
      6. 7.10.6 nFAULT 出力
      7. 7.10.7 フォルト条件のまとめ
    11. 7.11 デバイスの機能モード
      1. 7.11.1 スリープ・モード (nSLEEP = 0)
      2. 7.11.2 動作モード
      3. 7.11.3 nSLEEP リセット・パルス
      4. 7.11.4 機能モードのまとめ
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
      1. 8.1.1 ソレノイド負荷の駆動
        1. 8.1.1.1 ソレノイド・ドライバの代表的なアプリケーション
        2. 8.1.1.2 熱に関する計算
          1. 8.1.1.2.1 電力損失の計算
          2. 8.1.1.2.2 接合部温度の推定
        3. 8.1.1.3 アプリケーション特性の波形
      2. 8.1.2 ステッパ・モーターの駆動
        1. 8.1.2.1 ステッパ・ドライバの代表的なアプリケーション
        2. 8.1.2.2 電力損失の計算
        3. 8.1.2.3 接合部温度の推定
      3. 8.1.3 ブラシ付き DC モーターの駆動
        1. 8.1.3.1 ブラシ付き DC ドライバの代表的なアプリケーション
        2. 8.1.3.2 電力損失の計算
        3. 8.1.3.3 接合部温度の推定
        4. 8.1.3.4 単一のブラシ付き DC モーターの駆動
      4. 8.1.4 熱電冷却器 (TEC) の駆動
      5. 8.1.5 ブラシレス DC モーターの駆動
  9. パッケージの熱に関する考慮事項
    1. 9.1 DDW パッケージ
      1. 9.1.1 熱性能
        1. 9.1.1.1 定常状態熱性能
        2. 9.1.1.2 過渡熱性能
  10. 10電源に関する推奨事項
    1. 10.1 バルク容量
    2. 10.2 電源
  11. 11レイアウト
    1. 11.1 レイアウトのガイドライン
    2. 11.2 PCB 材料に関する推奨事項
    3. 11.3 熱に関する注意事項
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 関連資料
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 サポート・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 用語集
  13. 13メカニカル、パッケージ、および注文情報
    1. 13.1 テープおよびリール情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

VCC 電圧電源

DDW パッケージの DRV8952 の場合、外部電圧を VCC ピンに印加することで、内部ロジック回路に電力を供給することができます。VCC ピンの電圧は 3.05V~5.5V の範囲内で、適切にレギュレートする必要があります。外部電源が利用できない場合、VCC をデバイスの DVDD ピンに接続する必要があります。 VCC から電力を供給するとき、内部ロジック・ブロックは VM 電源レールから電力を消費しないため、DRV8952 の電力損失を低減できます。これは、高電圧アプリケーションや、周囲の温度が高いとき非常に有益です。0.1μF のセラミック・コンデンサを使用して、VCC ピンをグランドにバイパスします。