SNOSB66B August   2011  – November 2014 EMB1412

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
  7. Detailed Description
    1. 7.1 Overview
  8. Layout
    1. 8.1 Layout Guidelines
    2. 8.2 Thermal Performance
  9. Device and Documentation Support
    1. 9.1 Trademarks
    2. 9.2 Electrostatic Discharge Caution
    3. 9.3 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Detailed Description

7.1 Overview

The EMB1412 is a high speed, high peak current (7 A) single channel MOSFET driver. The high peak output current of the EMB1412 will switch power MOSFETs on and off with short rise and fall times, thereby reducing switching losses considerably. The EMB1412 includes both inverting and non-inverting inputs that give the user flexibility to drive the MOSFET with either active low or active high logic signals. The driver output stage consists of a compound structure with MOS and bipolar transistor operating in parallel to optimize current capability over a wide output voltage and operating temperature range. The bipolar device provides high peak current at the critical Miller plateau region of the MOSFET VGS, while the MOS device provides rail-to-rail output swing. The totem pole output drives the MOSFET gate between the gate drive supply voltage VCC and the power ground potential at the VEE pin.

The control inputs of the driver are high impedance CMOS buffers with TTL compatible threshold voltages. The negative supply of the input buffer is connected to the input ground pin IN_REF. An internal level shifting circuit connects the logic input buffers to the totem pole output drivers. The level shift circuit and separate input/output ground pins provide the option of single supply or split supply configurations. When driving the MOSFET gates from a single positive supply, the IN_REF and VEE pins are both connected to the power ground.

The isolated input and output stage grounds provide the capability to drive the MOSFET to a negative VGS voltage for a more robust and reliable off state. In split supply configuration, the IN_REF pin is connected to the ground of the controller which drives the EMB1412 inputs. The VEE pin is connected to a negative bias supply that can range from the IN_REF potential to as low as 14 V below the VCC gate drive supply. For reliable operation, the maximum voltage difference between VCC and IN_REF or between VCC and VEE is 14 V.

The minimum recommended operating voltage between VCC and IN_REF is 3.5 V. An Under-Voltage Lock Out (UVLO) circuit is included in the EMB1412 which senses the voltage difference between VCC and the input ground pin, IN_REF. When the VCC to IN_REF voltage difference falls below 2.8 V the driver is disabled and the output pin is held in the low state. The driver will resume normal operation when the VCC to IN_REF differential voltage exceeds 3 V.