SPRS825F October   2012  – June 2020 F28M36H33B2 , F28M36H53B2 , F28M36P53C2 , F28M36P63C2

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Commercial
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Power Consumption Summary
      1. Table 5-1 Current Consumption at 150-MHz C28x SYSCLKOUT and 75-MHz M3SSCLK
      2. Table 5-2 Current Consumption at 125-MHz C28x SYSCLKOUT and 125-MHz M3SSCLK
    5. 5.5  Electrical Characteristics
    6. 5.6  Thermal Resistance Characteristics for ZWT Package (Revision 0 Silicon)
    7. 5.7  Thermal Resistance Characteristics for ZWT Package (Revision A Silicon)
    8. 5.8  Thermal Design Considerations
    9. 5.9  Timing and Switching Characteristics
      1. 5.9.1 Power Sequencing
        1. Table 5-3 Reset (XRS) Timing Requirements
        2. Table 5-4 Reset (XRS) Switching Characteristics
        3. 5.9.1.1   Power Management and Supervisory Circuit Solutions
      2. 5.9.2 Clock Specifications
        1. 5.9.2.1 Changing the Frequency of the Main PLL
        2. 5.9.2.2 Input Clock Frequency and Timing Requirements, PLL Lock Times
          1. Table 5-5  Input Clock Frequency
          2. Table 5-7  Crystal Oscillator Electrical Characteristics
          3. Table 5-8  X1 Timing Requirements - PLL Enabled
          4. Table 5-9  X1 Timing Requirements - PLL Disabled
          5. Table 5-10 XCLKIN Timing Requirements - PLL Enabled
          6. Table 5-11 XCLKIN Timing Requirements - PLL Disabled
          7. Table 5-12 PLL Lock Times
        3. 5.9.2.3 Output Clock Frequency and Switching Characteristics
          1. Table 5-13 Output Clock Frequency
          2. Table 5-14 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
        4. 5.9.2.4 Internal Clock Frequencies
          1. Table 5-15 Internal Clock Frequencies (150-MHz Devices)
      3. 5.9.3 Timing Parameter Symbology
        1. 5.9.3.1 General Notes on Timing Parameters
        2. 5.9.3.2 Test Load Circuit
      4. 5.9.4 Flash Timing – Master Subsystem
        1. Table 5-16 Master Subsystem – Flash/OTP Endurance
        2. Table 5-17 Master Subsystem – Flash Parameters
        3. Table 5-18 Master Subsystem – Flash/OTP Access Timing
        4. Table 5-19 Master Subsystem – Flash Data Retention Duration
      5. 5.9.5 Flash Timing – Control Subsystem
        1. Table 5-21 Control Subsystem – Flash/OTP Endurance
        2. Table 5-22 Control Subsystem – Flash Parameters
        3. Table 5-23 Control Subsystem – Flash/OTP Access Timing
        4. Table 5-24 Control Subsystem – Flash Data Retention Duration
      6. 5.9.6 GPIO Electrical Data and Timing
        1. 5.9.6.1 GPIO - Output Timing
          1. Table 5-26 General-Purpose Output Switching Characteristics
        2. 5.9.6.2 GPIO - Input Timing
          1. Table 5-27 General-Purpose Input Timing Requirements
        3. 5.9.6.3 Sampling Window Width for Input Signals
        4. 5.9.6.4 Low-Power Mode Wakeup Timing
          1. Table 5-28 IDLE Mode Timing Requirements
          2. Table 5-29 IDLE Mode Switching Characteristics
          3. Table 5-30 STANDBY Mode Timing Requirements
          4. Table 5-31 STANDBY Mode Switching Characteristics
          5. Table 5-32 HALT Mode Timing Requirements
          6. Table 5-33 HALT Mode Switching Characteristics
      7. 5.9.7 External Interrupt Electrical Data and Timing
        1. Table 5-34 External Interrupt Timing Requirements
        2. Table 5-35 External Interrupt Switching Characteristics
    10. 5.10 Analog and Shared Peripherals
      1. 5.10.1 Analog-to-Digital Converter
        1. 5.10.1.1 Sample Mode
        2. 5.10.1.2 Start-of-Conversion Triggers
        3. 5.10.1.3 Analog Inputs
        4. 5.10.1.4 ADC Result Registers and EOC Interrupts
        5. 5.10.1.5 ADC Electrical Data and Timing
          1. Table 5-36 ADC Electrical Characteristics
          2. Table 5-37 External ADC Start-of-Conversion Switching Characteristics
      2. 5.10.2 Comparator + DAC Units
        1. 5.10.2.1 On-Chip Comparator and DAC Electrical Data and Timing
          1. Table 5-38 Electrical Characteristics of the Comparator/DAC
      3. 5.10.3 Interprocessor Communications
      4. 5.10.4 External Peripheral Interface
        1. 5.10.4.1 EPI General-Purpose Mode
        2. 5.10.4.2 EPI SDRAM Mode
        3. 5.10.4.3 EPI Host Bus Mode
          1. 5.10.4.3.1 EPI 8-Bit Host Bus (HB-8) Mode
            1. 5.10.4.3.1.1 HB-8 Muxed Address/Data Mode
            2. 5.10.4.3.1.2 HB-8 Non-Muxed Address/Data Mode
            3. 5.10.4.3.1.3 HB-8 FIFO Mode
          2. 5.10.4.3.2 EPI 16-Bit Host Bus (HB-16) Mode
            1. 5.10.4.3.2.1 HB-16 Muxed Address/Data Mode
            2. 5.10.4.3.2.2 HB-16 Non-Muxed Address/Data Mode
            3. 5.10.4.3.2.3 HB-16 FIFO Mode
        4. 5.10.4.4 EPI Electrical Data and Timing
          1. Table 5-52 EPI SDRAM Interface Switching Characteristics (see , , and )
          2. Table 5-53 EPI Host-Bus 8 and Host-Bus 16 Interface Switching Characteristics (see , , , and )
          3. Table 5-54 EPI Host-Bus 8 and Host-Bus 16 Interface Timing Requirements (see and )
          4. Table 5-55 EPI General-Purpose Interface Switching Characteristics (see )
          5. Table 5-56 EPI General-Purpose Interface Timing Requirements (see and )
    11. 5.11 Master Subsystem Peripherals
      1. 5.11.1 Synchronous Serial Interface
        1. 5.11.1.1 Bit Rate Generation
        2. 5.11.1.2 Transmit FIFO
        3. 5.11.1.3 Receive FIFO
        4. 5.11.1.4 Interrupts
        5. 5.11.1.5 Frame Formats
      2. 5.11.2 Universal Asynchronous Receiver/Transmitter
        1. 5.11.2.1 Baud-Rate Generation
        2. 5.11.2.2 Transmit and Receive Logic
        3. 5.11.2.3 Data Transmission and Reception
        4. 5.11.2.4 Interrupts
      3. 5.11.3 Cortex-M3 Inter-Integrated Circuit
        1. 5.11.3.1 Functional Overview
        2. 5.11.3.2 Available Speed Modes
        3. 5.11.3.3 I2C Electrical Data and Timing
          1. Table 5-57 I2C Timing
      4. 5.11.4 Cortex-M3 Controller Area Network
        1. 5.11.4.1 Functional Overview
      5. 5.11.5 Cortex-M3 Universal Serial Bus Controller
        1. 5.11.5.1 Functional Description
      6. 5.11.6 Cortex-M3 Ethernet Media Access Controller
        1. 5.11.6.1 Functional Overview
        2. 5.11.6.2 MII Signals
        3. 5.11.6.3 EMAC Electrical Data and Timing
          1. Table 5-59 Timing Requirements for MIITXCK (see )
          2. Table 5-60 Timing Requirements for MIIRXCK (see )
          3. Table 5-61 Switching Characteristics for EMAC MII Transmit (see )
          4. Table 5-62 Timing Requirements for EMAC MII Receive (see )
        4. 5.11.6.4 MDIO Electrical Data and Timing
          1. Table 5-63 Switching Characteristics for MDIO_CK (see )
          2. Table 5-64 Switching Characteristics for MDIO as Output (see )
          3. Table 5-65 Timing Requirements for MDIO as Input (see )
    12. 5.12 Control Subsystem Peripherals
      1. 5.12.1 High-Resolution PWM and Enhanced PWM Modules
        1. 5.12.1.1 HRPWM Electrical Data and Timing
          1. Table 5-66 High-Resolution PWM Characteristics at SYSCLKOUT = (60–150 MHz)
        2. 5.12.1.2 ePWM Electrical Data and Timing
          1. Table 5-67 ePWM Timing Requirements
          2. Table 5-68 ePWM Switching Characteristics
          3. 5.12.1.2.1 Trip-Zone Input Timing
            1. Table 5-69 Trip-Zone Input Timing Requirements
      2. 5.12.2 Enhanced Capture Module
        1. 5.12.2.1 eCAP Electrical Data and Timing
          1. Table 5-70 eCAP Timing Requirement
          2. Table 5-71 eCAP Switching Characteristics
      3. 5.12.3 Enhanced Quadrature Encoder Pulse Module
        1. 5.12.3.1 eQEP Electrical Data and Timing
          1. Table 5-72 eQEP Timing Requirements
          2. Table 5-73 eQEP Switching Characteristics
      4. 5.12.4 C28x Inter-Integrated Circuit Module
        1. 5.12.4.1 Functional Overview
        2. 5.12.4.2 Clock Generation
        3. 5.12.4.3 I2C Electrical Data and Timing
          1. Table 5-74 I2C Timing
      5. 5.12.5 C28x Serial Communications Interface
        1. 5.12.5.1 Architecture
        2. 5.12.5.2 Multiprocessor and Asynchronous Communication Modes
      6. 5.12.6 C28x Serial Peripheral Interface
        1. 5.12.6.1 Functional Overview
        2. 5.12.6.2 SPI Electrical Data and Timing
          1. 5.12.6.2.1 Master Mode Timing
            1. Table 5-75 SPI Master Mode External Timing (Clock Phase = 0)
            2. Table 5-76 SPI Master Mode External Timing (Clock Phase = 1)
          2. 5.12.6.2.2 Slave Mode Timing
            1. Table 5-77 SPI Slave Mode External Timing (Clock Phase = 0)
            2. Table 5-78 SPI Slave Mode External Timing (Clock Phase = 1)
      7. 5.12.7 C28x Multichannel Buffered Serial Port
        1. 5.12.7.1 McBSP Electrical Data and Timing
          1. 5.12.7.1.1 McBSP Transmit and Receive Timing
            1. Table 5-79 McBSP Timing Requirements
            2. Table 5-80 McBSP Switching Characteristics
          2. 5.12.7.1.2 McBSP as SPI Master or Slave Timing
            1. Table 5-81 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)
            2. Table 5-82 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)
            3. Table 5-83 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)
            4. Table 5-84 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)
            5. Table 5-85 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)
            6. Table 5-86 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)
            7. Table 5-87 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)
            8. Table 5-88 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)
  6. 6Detailed Description
    1. 6.1  Memory Maps
      1. 6.1.1 Control Subsystem Memory Map
      2. 6.1.2 Master Subsystem Memory Map
    2. 6.2  Identification
    3. 6.3  Master Subsystem
      1. 6.3.1 Cortex-M3 CPU
      2. 6.3.2 Cortex-M3 DMA and NVIC
      3. 6.3.3 Cortex-M3 Interrupts
      4. 6.3.4 Cortex-M3 Vector Table
      5. 6.3.5 Cortex-M3 Local Peripherals
      6. 6.3.6 Cortex-M3 Local Memory
      7. 6.3.7 Cortex-M3 Accessing Shared Resources and Analog Peripherals
    4. 6.4  Control Subsystem
      1. 6.4.1 C28x CPU/FPU/VCU
      2. 6.4.2 C28x Core Hardware Built-In Self-Test
      3. 6.4.3 C28x Peripheral Interrupt Expansion
      4. 6.4.4 C28x Direct Memory Access
      5. 6.4.5 C28x Local Peripherals
      6. 6.4.6 C28x Local Memory
      7. 6.4.7 C28x Accessing Shared Resources and Analog Peripherals
    5. 6.5  Analog Subsystem
      1. 6.5.1 ADC1
      2. 6.5.2 ADC2
      3. 6.5.3 Analog Comparator + DAC
      4. 6.5.4 Analog Common Interface Bus
    6. 6.6  Master Subsystem NMIs
    7. 6.7  Control Subsystem NMIs
    8. 6.8  Resets
      1. 6.8.1 Cortex-M3 Resets
      2. 6.8.2 C28x Resets
      3. 6.8.3 Analog Subsystem and Shared Resources Resets
      4. 6.8.4 Device Boot Sequence
    9. 6.9  Internal Voltage Regulation and Power-On-Reset Functionality
      1. 6.9.1 Analog Subsystem: Internal 1.8-V VREG
      2. 6.9.2 Digital Subsystem: Internal 1.2-V VREG
      3. 6.9.3 Analog and Digital Subsystems: Power-On-Reset Functionality
      4. 6.9.4 Connecting ARS and XRS Pins
    10. 6.10 Input Clocks and PLLs
      1. 6.10.1 Internal Oscillator (Zero-Pin)
      2. 6.10.2 Crystal Oscillator/Resonator (Pins X1/X2 and VSSOSC)
      3. 6.10.3 External Oscillators (Pins X1, VSSOSC, XCLKIN)
      4. 6.10.4 Main PLL
      5. 6.10.5 USB PLL
    11. 6.11 Master Subsystem Clocking
      1. 6.11.1 Cortex-M3 Run Mode
      2. 6.11.2 Cortex-M3 Sleep Mode
      3. 6.11.3 Cortex-M3 Deep Sleep Mode
    12. 6.12 Control Subsystem Clocking
      1. 6.12.1 C28x Normal Mode
      2. 6.12.2 C28x IDLE Mode
      3. 6.12.3 C28x STANDBY Mode
    13. 6.13 Analog Subsystem Clocking
    14. 6.14 Shared Resources Clocking
    15. 6.15 Loss of Input Clock (NMI Watchdog Function)
    16. 6.16 GPIOs and Other Pins
      1. 6.16.1 GPIO_MUX1
      2. 6.16.2 GPIO_MUX2
      3. 6.16.3 AIO_MUX1
      4. 6.16.4 AIO_MUX2
    17. 6.17 Emulation/JTAG
    18. 6.18 Code Security Module
      1. 6.18.1 Functional Description
    19. 6.19 µCRC Module
      1. 6.19.1 Functional Description
      2. 6.19.2 CRC Polynomials
      3. 6.19.3 CRC Calculation Procedure
      4. 6.19.4 CRC Calculation for Data Stored In Secure Memory
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Reference Design
  8. 8Device and Documentation Support
    1. 8.1 Device and Development Support Tool Nomenclature
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
    4. 8.4 Related Links
    5. 8.5 Support Resources
    6. 8.6 Trademarks
    7. 8.7 Electrostatic Discharge Caution
    8. 8.8 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Functional Description

The security module restricts the CPU access to on-chip secure memory without interrupting or stalling CPU execution. When a read occurs to a protected memory location, the read returns a zero value and CPU execution continues with the next instruction. This process, in effect, blocks read and write access to various memories through the JTAG port or external peripherals. Security is defined with respect to the access of on-chip secure memories and prevents unauthorized copying of proprietary code or data.

The zone is secure when CPU access to the on-chip secure memories associated with that zone is restricted. When secure, two levels of protection are possible, depending on where the program counter is currently pointing. If code is currently running from inside secure memory, only an access through JTAG is blocked (that is, through the JTAG debug probe). This process allows secure code to access secure data. Conversely, if code is running from unsecure memory, all accesses to secure memories are blocked. User code can dynamically jump in and out of secure memory, thereby allowing secure function calls from unsecure memory. Similarly, interrupt service routines can be placed in secure memory, even if the main program loop is run from unsecure memory.

The code security mechanism present in this device offers dual-zone security for the Cortex-M3 code and single-zone security for the C28x code. In case of dual-zone security on the master subsystem, the different secure memories (RAMs and flash sectors) can be assigned to different security zones by configuring the GRABRAM and GRABSECT registers associated with each zone. Flash Sector N and Flash Sector A are dedicated to Zone1 and Zone2, respectively, and cannot be allocated to any other zone by configuration. Similarly, flash sectors get assigned to different zones based on the setting in the GRABSECT registers.

Security is provided by a CSM password of 128 bits of data (four 32-bit words) that is used to secure or unsecure the zones. Each zone has its own 128-bit CSM password. The zone can be unsecured by executing the password match flow (PMF).

The CSM password for each zone is stored in its dedicated flash sector. The password storage locations in the flash sector store the CSM password. The password is selected by the system designer. If the password locations of a zone have all 128 bits as ones, the zone is considered "unsecure". Because new flash devices have erased flash (all ones), only a read of the password locations is required to bring any zone into unsecure mode. If the password locations of a zone have all 128 bits as zeros, the zone is considered "secure", regardless of the contents of the CSMKEY registers. The user should not use all zeros as a password or reset the device during an erase of the flash. Resetting the device during an erase routine can result in either an all-zero or unknown password. If a device is reset when the password locations are all zeros, the device cannot be unlocked by the password match flow. Using a password of all zeros will seriously limit the user’s ability to debug secure code or reprogram the flash.

NOTE

If a device is reset while the password locations of a zone contain all zeros or an unknown value, that zone will be permanently locked unless a method to run the flash erase routine from secure SARAM is embedded into the flash or OTP. Care must be taken when implementing this procedure to avoid introducing a security hole.