JAJSKH9C March 2012 – January 2021 INA282-Q1 , INA283-Q1 , INA284-Q1 , INA285-Q1 , INA286-Q1
PRODUCTION DATA
The zero-drift offset performance of the INA28x-Q1 family offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example, nonzero-drift, current-shunt monitors typically require a full-scale range of 100 mV. The INA28x-Q1 family gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces shunt dissipation by an order of magnitude, with many additional benefits. Alternatively, applications that must measure current over a wide dynamic range can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the INA282-Q1, INA286-Q1, or INA283-Q1 to accommodate larger shunt drops on the upper end of the scale. For instance, an INA282-Q1 operating on a 3.3-V supply can easily handle a full-scale shunt drop of 55 mV, with only 70 μV of offset.