JAJSLN1 June   2022 ISO7041-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 説明
  4. Revision History
    1.     Device Comparison Table
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  絶対最大定格
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6.     Insulation Specifications
    7. 6.6  Safety-Related Certifications
    8. 6.7  Safety Limiting Values
    9. 6.8  Electrical Characteristics 5V Supply
    10. 6.9  Supply Current Characteristics 5V Supply
    11. 6.10 Electrical Characteristics 3.3V Supply
    12. 6.11 Supply Current Characteristics 3.3V Supply
    13. 6.12 Switching Characteristics
    14. 6.13 Insulation Characteristics Curves
    15. 6.14 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Refresh
      2. 8.3.2 Electromagnetic Compatibility (EMC) Considerations
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Insulation Lifetime
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overview

The ISO7041-Q1 device uses edge encoding of data with an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide isolation barrier. The transmitter uses a high frequency carrier signal to pass data across the barrier representing a signal edge transition. Using this method achieves very low power consumption and high immunity. The receiver demodulates the carrier signal after advanced signal conditioning and produces the output through a buffer stage. For low data rates, a refresh logic option is available to make sure the output state matches the input state. Advanced circuit techniques are used to maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 8-1, shows a functional block diagram of a typical channel.