JAJS275U September   2007  – October 2024 ISO7240C , ISO7240CF , ISO7240M , ISO7241C , ISO7241M , ISO7242C , ISO7242M

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configurations and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics: VCC1 and VCC2 at 5-V Operation
    10. 5.10 Supply Current Characteristics: VCC1 and VCC2 at 5-V Operation
    11. 5.11 Electrical Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation
    12. 5.12 Supply Current Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation
    13. 5.13 Electrical Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation
    14. 5.14 Supply Current Characteristics: VCC1 at 3.3-V, VCC2 at 5-V Operation
    15. 5.15 Electrical Characteristics: VCC1 and VCC2 at 3.3 V Operation
    16. 5.16 Supply Current Characteristics: VCC1 and VCC2 at 3.3 V Operation
    17. 5.17 Switching Characteristics: VCC1 and VCC2 at 5-V Operation
    18. 5.18 Switching Characteristics: VCC1 at 5-V, VCC2 at 3.3-V Operation
    19. 5.19 Switching Characteristics: VCC1 at 3.3-V and VCC2 at 5-V Operation
    20. 5.20 Switching Characteristics: VCC1 and VCC2 at 3.3-V Operation
    21. 5.21 Insulation Characteristics Curves
    22. 5.22 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Isolated Data Acquisition System for Process Control
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Isolated SPI for an Analog Input Module with 16 Inputs
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Isolated RS-232 Interface
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Related Links
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 8-10). Layer stacking must be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

  • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of the inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
  • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
  • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in2.
  • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links typically have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep the planes symmetrical. This makes the stack mechanically stable and prevents warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, refer to Digital Isolator Design Guide.