JAJSJ74B August   2021  – August 2023 JFE2140

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 AC Measurement Configurations
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Precision Matching
      2. 8.3.2 Ultra-Low Noise
      3. 8.3.3 Low Gate Current
      4. 8.3.4 Input Protection
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Protection Diodes
      2. 9.1.2 Cascode Configuration
      3. 9.1.3 Common-Source Amplifier
      4. 9.1.4 Composite Amplifiers
    2. 9.2 Typical Applications
      1. 9.2.1 Low-Noise, Low-Power, High-Input-Impedance Composite Amplifier
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Differential Front-End Design
        1. 9.2.2.1 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 PSpice® for TI
        2. 10.1.1.2 TINA-TI™シミュレーション・ソフトウェア (無償ダウンロード)
        3. 10.1.1.3 TI のリファレンス・デザイン
        4. 10.1.1.4 フィルタ設計ツール
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 サポート・リソース
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 用語集
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Input Protection Diodes

The JFE2140 features diodes that are used to help clamp voltage surges that can occur on the input sensor to the gate. The diodes are connected between the gates, sources, and drains of each JFET to two separate pins, VCL and VCH. The clamping mechanism works by steering current from the gate into the VCL or VCH nodes when the voltage at the gate, source or drain is less than VCL or greater than VCH. Figure 9-2 shows an example of a microphone input circuit where a dc blocking capacitor operates with a large dc voltage. When the microphone input is dropped or shorted, the dc blocking capacitor discharges into the VCL or VCH nodes, thus helping eliminate large signal transient voltages on the gate. There are also clamping diodes from the drain and source to VCL and VCH, respectively. The clamping diodes can withstand high surge currents up to 200 mA for 50 ms; however, limit dc current to less than 20 mA.

GUID-20210811-SS0I-3VDB-DQBJ-WVZVQMH2ZBZC-low.gif Figure 9-1 JFE2140 Clamping Diode Example

The example in Figure 9-2 shows the diode clamp used to protect the JFET against overvoltage in a phantom-powered microphone circuit. Phantom power typically delivers 48 V through a 6.8-kΩ pullup resistor to a microphone or dynamic load. If the microphone is disconnected, dc blocking capacitor CDC can be biased up to 48 V. If the input to the capacitor is then shorted to ground (shown by the switch in Figure 9-2), the gate voltage can exceed the absolute maximum rating for VGS. In this case, the blocking diode is used, along with current limiting resistors RG and RL, to clamp the gate voltage to a safe level. Be aware that the thermal noise of RG couples directly into the gate input; therefore, make sure to minimize the resistance of RG.

The clamping diodes are not required for operation. The VGS voltage can withstand –40 V, so clamping is not required if the VGS voltage is kept greater than this limit. If the diodes are not needed, leave the VCL and VCH nodes floating.