JAJSAP6I June   2007  – September 2018 LM2735

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的な昇圧アプリケーションの回路
      2.      効率と負荷電流との関係VO=12V
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings: LM2735
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Theory of Operation
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Limit
      2. 7.3.2 Thermal Shutdown
      3. 7.3.3 Soft Start
      4. 7.3.4 Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin and Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1  LM2735X SOT-23 Design Example 1
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Inductor Selection
          3. 8.2.1.2.3 Input Capacitor
          4. 8.2.1.2.4 Output Capacitor
          5. 8.2.1.2.5 Setting the Output Voltage
        3. 8.2.1.3 Application Curves
      2. 8.2.2  LM2735Y SOT-23 Design Example 2
      3. 8.2.3  LM2735X WSON Design Example 3
      4. 8.2.4  LM2735Y WSON Design Example 4
      5. 8.2.5  LM2735Y MSOP-PowerPAD Design Example 5
      6. 8.2.6  LM2735X SOT-23 Design Example 6
      7. 8.2.7  LM2735Y SOT-23 Design Example 7
      8. 8.2.8  LM2735X SOT-23 Design Example 8
      9. 8.2.9  LM2735Y SOT-23 Design Example 9
      10. 8.2.10 LM2735X WSON Design Example 10
      11. 8.2.11 LM2735Y WSON Design Example 11
      12. 8.2.12 LM2735X WSON SEPIC Design Example 12
      13. 8.2.13 LM2735Y MSOP-PowerPAD SEPIC Design Example 13
      14. 8.2.14 LM2735X SOT-23 LED Design Example 14
      15. 8.2.15 LM2735Y WSON FlyBack Design Example 15
      16. 8.2.16 LM2735X SOT-23 LED Design Example 16 VRAIL > 5.5 V Application
      17. 8.2.17 LM2735X SOT-23 LED Design Example 17 Two-Input Voltage Rail Application
      18. 8.2.18 SEPIC Converter
        1. 8.2.18.1 Detailed Design Procedure
          1. 8.2.18.1.1 SEPIC Design Guide
          2. 8.2.18.1.2 Small Ripple Approximation
          3. 8.2.18.1.3 Steady State Analysis With Loss Elements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 WSON Package
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
      1. 10.3.1 Definitions
      2. 10.3.2 PCB Design With Thermal Performance in Mind
      3. 10.3.3 LM2735 Thermal Models
      4. 10.3.4 Calculating Efficiency, and Junction Temperature
        1. 10.3.4.1 Example Efficiency Calculation
      5. 10.3.5 Calculating RθJA and RΨJC
        1. 10.3.5.1 Procedure
        2. 10.3.5.2 Example From Previous Calculations
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 11.1.2 開発サポート
        1. 11.1.2.1 WEBENCH®ツールによるカスタム設計
    2. 11.2 ドキュメントのサポート
      1. 11.2.1 関連資料
    3. 11.3 コミュニティ・リソース
    4. 11.4 商標
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Guidelines

When planning layout, there are a few things to consider when trying to achieve a clean, regulated output. The most important consideration when completing a boost converter layout is the close coupling of the GND connections of the COUT capacitor and the LM2735 PGND pin. The GND ends should be close to one another and be connected to the GND plane with at least two through-holes. There should be a continuous ground plane on the bottom layer of a two-layer board except under the switching node island. The FB pin is a high impedance node and care should be taken to make the FB trace short to avoid noise pickup and inaccurate regulation. The feedback resistors should be placed as close as possible to the IC, with the AGND of R1 placed as close as possible to the GND (pin 5 for the WSON) of the IC. The VOUT trace to R2 should be routed away from the inductor and any other traces that are switching. High AC currents flow through the VIN, SW and VOUT traces, so they should be as short and wide as possible. However, making the traces wide increases radiated noise, so the designer must make this trade-off. Radiated noise can be decreased by choosing a shielded inductor. The remaining components should also be placed as close as possible to the IC. See Application Note AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines (SNVA054) for further considerations and the LM2735 demo board as an example of a 4-layer layout.

Below is an example of a good thermal and electrical PCB design. This is very similar to our LM2735 demonstration boards that are obtainable through the TI website. The demonstration board consists of a 2-layer PCB with a common input and output voltage application. Most of the routing is on the top layer, with the bottom layer consisting of a large ground plane. The placement of the external components satisfies the electrical considerations, and the thermal performance has been improved by adding thermal vias and a top layer Dog-Bone.