JAJSA67I April   2004  – February 2019 LM2743

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーションの図
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Start Up and Soft-Start
      2. 8.3.2  Normal Operation
      3. 8.3.3  Tracking a Voltage Level
      4. 8.3.4  Tracking Voltage Slew Rate
      5. 8.3.5  Sequencing
      6. 8.3.6  SD Pin Impedance
      7. 8.3.7  MOSFET Gate Drivers
      8. 8.3.8  Power Good Signal
      9. 8.3.9  UVLO
      10. 8.3.10 Current Limit
      11. 8.3.11 Foldback Current Limit
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Synchronous Buck Converter Typical Application using LM2743
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2 Duty Cycle Calculation
          3. 9.2.1.2.3 Input Capacitor
          4. 9.2.1.2.4 Output Inductor
          5. 9.2.1.2.5 Output Capacitor
          6. 9.2.1.2.6 MOSFETs
          7. 9.2.1.2.7 Support Components
          8. 9.2.1.2.8 Control Loop Compensation
          9. 9.2.1.2.9 Efficiency Calculations
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Example Circuit 1
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Bill of Materials
      3. 9.2.3 Example Circuit 2
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Bill of Materials
      4. 9.2.4 Example Circuit 3
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Bill of Materials
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 開発サポート
        1. 12.1.1.1 WEBENCH®ツールによるカスタム設計
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 コミュニティ・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Output Capacitor

The output capacitor forms the second half of the power stage of a Buck switching converter. It is used to control the output voltage ripple (ΔVOUT) and to supply load current during fast load transients.

In this example the output current is 4 A and the expected type of capacitor is an aluminum electrolytic, as with the input capacitors. Other possibilities include ceramic, tantalum, and solid electrolyte capacitors, however the ceramic type often do not have the large capacitance needed to supply current for load transients, and tantalums tend to be more expensive than aluminum electrolytic. Aluminum capacitors tend to have very high capacitance and fairly low ESR, meaning that the ESR zero, which affects system stability, will be much lower than the switching frequency. The large capacitance means that at the switching frequency, the ESR is dominant, hence the type and number of output capacitors is selected on the basis of ESR. One simple formula to find the maximum ESR based on the desired output voltage ripple, ΔVOUT and the designed output current ripple, ΔIOUT, is:

Equation 25. LM2743 20095225.gif

In this example, in order to maintain a 2% peak-to-peak output voltage ripple and a 40% peak-to-peak inductor current ripple, the required maximum ESR is 20 mΩ. The Sanyo 4SP560M electrolytic capacitor will give an equivalent ESR of 14 mΩ. The capacitance of 560 µF is enough to supply energy even to meet severe load transient demands.