JAJSAY1E March   2008  – October 2017 LM2854

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション回路
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Switching Frequency
      2. 7.3.2  Enable
      3. 7.3.3  Soft-Start
      4. 7.3.4  Tracking
      5. 7.3.5  Pre-Biased Start-up Capability
      6. 7.3.6  Feedback Voltage Accuracy
      7. 7.3.7  Positive Current Limit
      8. 7.3.8  Negative Current Limit
      9. 7.3.9  Overtemperature Protection
      10. 7.3.10 Loop Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Soft-Start and Track Mode
      3. 7.4.3 Normal Operating Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Filter Capacitor
        2. 8.2.2.2 AVIN Filtering Components
        3. 8.2.2.3 Soft-Start Capacitor
        4. 8.2.2.4 Tracking - Equal Soft-Start Time
        5. 8.2.2.5 Tracking - Equal Slew Rates
        6. 8.2.2.6 Enable and UVLO
        7. 8.2.2.7 Output Voltage Setting
        8. 8.2.2.8 Compensation Component Selection
        9. 8.2.2.9 Filter Inductor and Output Capacitor Selection
      3. 8.2.3 Application Curves
      4. 8.2.4 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 ドキュメントのサポート
      1. 11.1.1 関連資料
    2. 11.2 商標
    3. 11.3 静電気放電に関する注意事項
    4. 11.4 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Filter Inductor and Output Capacitor Selection

In a buck regulator, selection of the filter inductor and capacitor will affect many key system parameters, including stability, transient response and efficiency The LM2854 can accommodate relatively wide ranges of output capacitor and filter inductor values in a typical application and still achieve excellent load current transient performance and low output voltage ripple.

The inductance is chosen such that the peak-to-peak inductor current ripple, ΔiL, is approximately 25 to 40% of IOUT as shown in Equation 16.

Equation 16. LM2854 30052851.gif

Note that the peak inductor current is the DC output current plus half the ripple current and reaches its highest level at lowest duty cycle (or highest VIN). It is recommended that the inductor should have a saturation current rating in excess of the current limit level.

When operating the LM2854 at input voltages above 5.2 V, the inductor should be sized to keep the minimum inductor current above –0.5 A. For most applications this should only occur at light loads or when the inductor is drastically undersized. To ensure the current never goes below –0.5 A for any application, the peak-to-peak ripple current (ΔiL) in the inductor should be less than 1 A. Keeping the minimum inductor current above –0.5 A limits the energy storage in the inductor and helps prevent the switch node voltage from exceeding the absolute maximum specification when the low side FET turns off.

Table 3 lists examples of off-the-shelf powdered iron and ferrite based inductors that are suitable for use with the LM2854. The output capacitor can be of ceramic or electrolytic chemistry. The chosen output capacitor requires sufficient DC voltage rating and RMS ripple current handling capability.

The output capacitor RMS current and peak-to-peak output ripple are given respectively as in Equation 17.

Equation 17. LM2854 30052852.gif

In general, 22 µF to 100 µF of ceramic output capacitance is sufficient for both LM2854 frequency options given the optimal high frequency characteristics and low ESR of ceramic dielectric. It is advisable to consult the manufacturer’s derating curves for capacitance voltage coefficient as the in-circuit capacitance may drop significantly with applied voltage.

Tantalum or organic polymer electrolytic capacitance may be suitable with the LM2854 500 kHz option, particularly in applications where substantial bulk capacitance per unit volume is required. However, the high loop bandwidth achievable with the LM2854 obviates the necessity for large bulk capacitance during transient loading conditions.

Table 4 lists some examples of commercially available capacitors that can be used with the LM2854.

Table 1. LM2854 500-kHz Compensation Component Values

VIN (V) LO (µH) CO (µF) ESR (mΩ) RFB1 (kΩ) CCOMP (pF) RCOMP (kΩ)
MIN MAX MIN MAX
5 1.5 40 100 2 10 150 47 1
1.5 100 200 1 5 150 100 1
1.5 100 220 15 25 150 120 25
2.2 40 100 2 10 150 68 1
2.2 100 200 1 5 150 120 1
2.2 100 220 15 25 120 120 15
3.3 1.5 40 100 2 10 150 68 1
1.5 100 200 1 5 100 150 1
1.5 100 220 15 25 100 150 15
2.2 40 100 2 10 150 100 1
2.2 100 200 1 5 100 220 1
2.2 100 220 15 25 100 220 10

Table 2. LM2854 1-MHz Compensation Component Values

VIN (V) LO (µH) CO (µF) ESR (mΩ) RFB1 (kΩ) CCOMP (pF) RCOMP (kΩ)
MIN MAX MIN MAX
5 0.68 20 60 2 10 120 33 1
0.68 60 150 1 5 75 100 1
0.68 100 220 15 25 100 100 20
1 20 60 2 10 100 56 1
1 60 150 1 5 75 150 1
1 100 220 15 25 75 150 15
3.3 0.68 20 60 2 10 75 56 1
0.68 60 150 1 5 50 150 1
0.68 100 220 15 25 50 150 12
1 20 60 2 10 75 82 1
1 60 150 1 5 50 220 1
1 100 220 15 25 33 330 10

Table 3. Recommended Filter Inductors

INDUCTANCE (µH) DCR (mΩ) MANUFACTURER MANUFACTURER P/N CASE SIZE (mm)
0.47 14.5 Vishay Dale IHLP1616BZERR47M11 4.06 × 4.45 × 2.00
1 24 Vishay Dale IHLP1616BZER1R0M11 4.06 × 4.45 × 2.00
0.47 8.4 Vishay Dale IHLP2525AHERR47M01 6.47 × 6.86 × 1.80
0.47 6 Vishay Dale IHLP2525BDERR47M01 6.47 × 6.86 × 2.40
0.68 8.7 Vishay Dale IHLP2525BDERR68M01 6.47 × 6.86 × 2.40
0.82 10.6 Vishay Dale IHLP2525BDERR82M01 6.47 × 6.86 × 2.40
1 13.1 Vishay Dale IHLP2525BDER1R0M01 6.47 × 6.86 × 2.40
1.5 18.5 Vishay Dale IHLP2525BDER1R5M01 6.47 × 6.86 × 2.40
2.2 15.7 Vishay Dale IHLP2525CZER2R2M11 6.47 × 6.86 × 3.00
0.47 3.5 Sumida CDMC6D28NP-R47M 6.50 × 7.25 × 3.00
0.68 4.5 Sumida CDMC6D28NP-R68M 6.50 × 7.25 × 3.00
1 17.3 Sumida CDMC6D28NP-1R0M 6.50 × 7.25 × 3.00
1.5 10.4 Sumida CDMC6D28NP-1R5M 6.50 × 7.25 × 3.00
2.2 16.1 Sumida CDMC6D28NP-2R2M 6.50 × 7.25 × 3.00
0.56 10 Coilcraft DO1813H-561ML 6.10 × 8.89 × 5.00
0.47 3.3 Coilcraft HA3619-471ALC 7 × 7 × 3
0.68 4.8 Coilcraft HA3619-681ALC 7 × 7 × 3
1 7.5 Coilcraft HA3619-102ALC 7 × 7 × 3
1.2 9.4 Coilcraft HA3619-122ALC 7 × 7 × 3
1.5 11.5 Coilcraft HA3619-152ALC 7 × 7 × 3
1.8 16.5 Coilcraft HA3619-182ALC 7 × 7 × 3
0.47 3.3 TDK SPM6530T-R47M170 7.1 × 6.5 × 3
0.68 4.9 TDK SPM6530T-R68M140 7.1 × 6.5 × 3
1 7.1 TDK SPM6530T-1R0M120 7.1 × 6.5 × 3
1.5 9.7 TDK SPM6530T-1R5M100 7.1 × 6.5 × 3
0.47 14 Cyntec PCMC042T-0R47MN 4 × 4.5 × 2
1.0 9 Cyntec PCMC063T-1R0MN 6.5 × 6.9 × 3
1.5 14 Cyntec PCMC063T-1R5MN 6.5 × 6.9 × 3

Table 4. Recommended Filter Capacitors

CAPACITANCE (µF) VOLTAGE (V), ESR (mΩ) CHEMISTRY MANUFACTURER MANUFACTURER P/N CASE SIZE
22 6.3, < 5 Ceramic, X5R TDK C3216X5R0J226M 1206
47 6.3, < 5 Ceramic, X5R TDK C3216X5R0J476M 1206
47 6.3, < 5 Ceramic, X5R TDK C3225X5R0J476M 1210
47 10, < 5 Ceramic, X5R TDK C3225X5R1A476M 1210
100 6.3, < 5 Ceramic, X5R TDK C3225X5R0J107M 1210
100 6.3, 50 Tantalum AVX TPSD157M006#0050 D, 7.5 × 4.3 × 2.9 mm
100 6.3, 25 Organic Polymer Sanyo 6TPE100MPB2 B2, 3.5 × 2.8 × 1.9 mm
150 6.3, 18 Organic Polymer Sanyo 6TPE150MIC2 C2, 6 × 3.2 × 1.8 mm
330 6.3, 18 Organic Polymer Sanyo 6TPE330MIL D3L, 7.3 × 4.3 × 2.8 mm
470 6.3, 23 Niobium Oxide AVX NOME37M006#0023 E, 7.3 × 4.3 × 4.1 mm