SLVSES8A October   2020  – December 2020 LM5127-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Enable (EN, VCC_HOLD)
      2. 8.3.2  Dual Input VCC Regulator (BIAS, VCCX, VCC)
      3. 8.3.3  Dual Input VDD Switch (VDD, VDDX)
      4. 8.3.4  Device Configuration and Light Load Switching Mode Selection (CFG/MODE)
      5. 8.3.5  Fixed or Adjustable Output Regulation Target (VOUT, FB)
      6. 8.3.6  Overvoltage Protection (VOUT, FB)
      7. 8.3.7  Power Good Indicator (PGOOD)
      8. 8.3.8  Programmable Switching Frequency (RT)
      9. 8.3.9  External Clock Synchronization (SYNC)
      10. 8.3.10 Programmable Spread Spectrum (DITHER)
      11. 8.3.11 Programmable Soft Start (SS)
      12. 8.3.12 Fast Re-start using VCC_HOLD (VCC_HOLD)
      13. 8.3.13 Transconductance Error Amplifier and PWM (COMP)
      14. 8.3.14 Current Sensing and Slope Compensation (CSA, CSB)
      15. 8.3.15 Constant Peak Current Limit (CSA, CSB)
      16. 8.3.16 Maximum Duty Cycle and Minimum Controllable On-time Limits (Boost)
      17. 8.3.17 Bypass Mode (Boost)
      18. 8.3.18 Minimum Controllable On-time and Minimum Controllable Off-time Limits (Buck)
      19. 8.3.19 Low Dropout Mode for Extended Minimum Input Voltage (Buck)
      20. 8.3.20 Programmable Hiccup Mode Overload Protection (RES)
      21. 8.3.21 MOSFET Drivers and Hiccup Mode Fault Protection (LO, HO, HB)
      22. 8.3.22 Battery Monitor (BMOUT, BMIN_FIX, BMIN_PRG)
      23. 8.3.23 Dual-phase Interleaved Configuration for High Current Supply (CFG)
      24. 8.3.24 Thermal Shutdown Protection
      25. 8.3.25 External VCCX Supply Reduces Power Dissipation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Status
        1. 8.4.1.1 Shutdown Mode
        2. 8.4.1.2 Configuration Mode
        3. 8.4.1.3 Active Mode
        4. 8.4.1.4 Sleep Mode
        5. 8.4.1.5 Deep Sleep Mode
          1. 8.4.1.5.1 Cutting Leakage Path in Deep Sleep Mode (DIS, SLEEP1, SENSE1)
        6. 8.4.1.6 VCC HOLD Mode
      2. 8.4.2 Light Load Switching Mode
        1. 8.4.2.1 Forced PWM (FPWM) Operation
        2. 8.4.2.2 Diode Emulation (DE) Operation (Connect RSS at SS)
        3. 8.4.2.3 Forced Diode Emulation Operation in FPWM Mode
        4. 8.4.2.4 Skip Mode Operation
      3. 8.4.3 LM5127 Cheat Sheet
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Recommended Power Tree Architecture
        2. 9.2.2.2 Application Ideas
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

External Clock Synchronization (SYNC)

The switching frequency can be synchronized to an external clock by directly applying an external pulse signal to SYNC. The internal CH1 and CH3 clocks are synchronized at the rising edge of the external synchronization pulse. The internal clocks of CH2 is 180° phase-shifted from CH3 clock using an internal PLL. Connect SYNC to ground if not used.

The external synchronization pulse must be greater than VSYNC-RISING in high logic state and must be less than VSYNC-FALLING in low logic state. The duty cycle of the external synchronization pulse is not limited, but the minimum on-pulse and the minimum off-pulse widths should be greater than 100 ns. The frequency of the external synchronization pulse should satisfy the following two inequalities.

Equation 5. GUID-048EC3D1-311C-4DBE-BFB6-4736F21E5FDA-low.svg
Equation 6. GUID-764D37CA-6F6F-4235-9424-32732A9229FF-low.gif

For example, RT resistor is required for 350-kHz switching to cover from 263-kHz to 525-kHz clock synchronization without changing the RT resistor value.

GUID-3071E46D-079F-4BEF-9252-66A693A87F80-low.gifFigure 8-8 External Clock Synchronization

Drive the SYNC pin through minimum 1-kΩ resistor if the BIAS pin voltage is less than the SYNC pin voltage in any conditions.