JAJSKS0C December   2020  – February 2023 LM5149-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings 
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Active EMI Filter
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN)
      2. 8.3.2  High-Voltage Bias Supply Regulator (VCC, VCCX, VDDA)
      3. 8.3.3  Precision Enable (EN)
      4. 8.3.4  Power-Good Monitor (PG)
      5. 8.3.5  Switching Frequency (RT)
      6. 8.3.6  Active EMI Filter
      7. 8.3.7  Dual Random Spread Spectrum (DRSS)
      8. 8.3.8  Soft Start
      9. 8.3.9  Output Voltage Setpoint (FB)
      10. 8.3.10 Minimum Controllable On Time
      11. 8.3.11 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      12. 8.3.12 Slope Compensation
      13. 8.3.13 Inductor Current Sense (ISNS+, VOUT)
        1. 8.3.13.1 Shunt Current Sensing
        2. 8.3.13.2 Inductor DCR Current Sensing
      14. 8.3.14 Hiccup Mode Current Limiting
      15. 8.3.15 High-Side and Low-Side Gate Drivers (HO, LO)
      16. 8.3.16 Output Configurations (CNFG)
      17. 8.3.17 Single-Output Dual-Phase Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode
      2. 8.4.2 Pulse Frequency Modulation and Synchronization (PFM/SYNC)
      3. 8.4.3 Thermal Shutdown
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Power Train Components
        1. 9.1.1.1 Buck Inductor
        2. 9.1.1.2 Output Capacitors
        3. 9.1.1.3 Input Capacitors
        4. 9.1.1.4 Power MOSFETs
        5. 9.1.1.5 EMI Filter
        6. 9.1.1.6 Active EMI Filter
      2. 9.1.2 Error Amplifier and Compensation
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – High-Efficiency 2.1-MHz Synchronous Buck Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Custom Design With Excel Quickstart Tool
          3. 9.2.1.2.3  Buck Inductor
          4. 9.2.1.2.4  Current-Sense Resistance
          5. 9.2.1.2.5  Output Capacitors
          6. 9.2.1.2.6  Input Capacitors
          7. 9.2.1.2.7  Frequency Set Resistor
          8. 9.2.1.2.8  Feedback Resistors
          9. 9.2.1.2.9  Compensation Components
          10. 9.2.1.2.10 Active EMI Components
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – High Efficiency 48-V to 12-V 400-kHz Synchronous Buck Regulator
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Design 3 – High Efficiency 440-kHz Synchronous Buck Regulator
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Design 4 – Dual-Phase 400-kHz 20-A Synchronous Buck Regulator
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate-Drive Layout
        3. 9.4.1.3 PWM Controller Layout
        4. 9.4.1.4 Active EMI Layout
        5. 9.4.1.5 Thermal Design and Layout
        6. 9.4.1.6 Ground Plane Design
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
        1. 10.2.1.1 PCB Layout Resources
        2. 10.2.1.2 Thermal Design Resources
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 サポート・リソース
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 用語集
  11. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Output Capacitors
  1. Use Equation 39 to estimate the output capacitance required to manage the output voltage overshoot during a load-off transient (from full load to no load) assuming a load transient deviation specification of 1.5% (75 mV for a 5-V output).
    Equation 39. GUID-AA8429A4-C1B2-4C85-85C1-23C59774B7A1-low.gif
  2. Noting the voltage coefficient of ceramic capacitors where the effective capacitance decreases significantly with applied voltage, select four 47-µF, 10-V, X7R, 1210 ceramic output capacitors. Generally, when sufficient capacitance is used to satisfy the load-off transient response requirement, the voltage undershoot during a no-load to full-load transient is also satisfactory.
  3. Use Equation 40 to estimate the peak-peak output voltage ripple at nominal input voltage.
    Equation 40. GUID-CBC72535-3C24-42DF-9549-749903CF2122-low.gif

    where

    • RESR is the effective equivalent series resistance (ESR) of the output capacitors.
    • 44 µF is the total effective (derated) ceramic output capacitance at 5 V.
  4. Use Equation 41 to calculate the output capacitor RMS ripple current using and verify that the ripple current is within the capacitor ripple current rating.
    Equation 41. GUID-497F15C3-A793-413A-BA74-36039C0739D2-low.gif