JAJSGD4C July   2015  – October 2018 LM5160-Q1

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的な同期整流降圧アプリケーション回路
      2.      代表的なFly-Buckアプリケーション回路
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Control Circuit
      2. 8.3.2  VCC Regulator
      3. 8.3.3  Regulation Comparator
      4. 8.3.4  Soft Start
      5. 8.3.5  Error Amplifier
      6. 8.3.6  On-Time Generator
      7. 8.3.7  Current Limit
      8. 8.3.8  N-Channel Buck Switch and Driver
      9. 8.3.9  Synchronous Rectifier
      10. 8.3.10 Enable / Undervoltage Lockout (EN/UVLO)
      11. 8.3.11 Thermal Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Forced Pulse Width Modulation (FPWM) Mode
      2. 8.4.2 Undervoltage Detector
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Ripple Configuration
    2. 9.2 Typical Applications
      1. 9.2.1 LM5160-Q1 Synchronous Buck (10-V to 60-V Input, 5-V Output, 1.5-A Load)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Feedback Resistor Divider - RFB1, RFB2
          3. 9.2.1.2.3  Switching Frequency - RON
          4. 9.2.1.2.4  Inductor - L
          5. 9.2.1.2.5  Output Capacitor - COUT
          6. 9.2.1.2.6  Series Ripple Resistor - RESR
          7. 9.2.1.2.7  VCC and Bootstrap Capacitors - CVCC, CBST
          8. 9.2.1.2.8  Input Capacitor - CIN
          9. 9.2.1.2.9  Soft-Start Capacitor - CSS
          10. 9.2.1.2.10 EN/UVLO Resistors - RUV1, RUV2
        3. 9.2.1.3 Application Curves
      2. 9.2.2 LM5160-Q1 Isolated Fly-Buck (18-V to 32-V Input, 12-V, 4.5-W Isolated Output)
        1. 9.2.2.1 LM5160-Q1 Fly-Buck Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Selection of VOUT1 and Turns Ratio
          2. 9.2.2.2.2 Secondary Rectifier Diode
          3. 9.2.2.2.3 External Ripple Circuit
          4. 9.2.2.2.4 Output Capacitor - COUT2
        3. 9.2.2.3 Application Curves
    3. 9.3 Do's and Don'ts
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 12.1.2 開発サポート
        1. 12.1.2.1 WEBENCH®ツールによるカスタム設計
    2. 12.2 ドキュメントのサポート
      1. 12.2.1 関連資料
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 コミュニティ・リソース
    5. 12.5 商標
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power Supply Recommendations

The LM5160-Q1 DC/DC converter is designed to operate from a wide input voltage range of 4.5 V to 65 V. The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended Operating Conditions tables. In addition, the input supply must be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input current with Equation 25.

Equation 25. LM5160-Q1 q_Iin_nvsb29.gif

where

  • η is the efficiency

If the regulator is connected to an input supply through long wires or PCB traces with a large impedance, take special care to achieve stable performance. The parasitic inductance and resistance of the input cables may have an adverse affect on converter operation, particularly during operation at low input voltage. The parasitic inductance in combination with the low-ESR ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at VIN each time the input supply is cycled on and off. The parasitic resistance causes the input voltage to dip during a load transient. The best way to solve such issues is to reduce the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input parallel damping and helps to hold the input voltage steady during large load transients.

An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for DC-DC Converters (SNVA489) provides helpful suggestions when designing an input filter for any switching regulator.