JAJSSD9D April 2006 – February 2024 LM94
PRODUCTION DATA
LM94 で検出される電圧には、直列抵抗の IFRS 電圧降下も含まれます。非理想係数 η は、考慮されていない唯一の他のパラメータであり、これは測定に使用するダイオードによって異なります。ΔVBE は η と T の両方に比例するため、η の変動と温度の変動を区別することはできません。非理想係数は温度センサで制御されないため、センサの精度を悪化させる直接要因となります。65nm プロセスの Pentium D プロセッサでは、Intel は、ダイオード用の式 14を真として仮定した回路でプロセッサ ダイオードを測定した場合、η の部品間の変動を +4.06%/−0.89% と規定しています。たとえば、温度が 75℃ (348 ケルビン) のときの温度センサの精度仕様が ±2.5℃、プロセッサ ダイオードの非理想性変動が +4.06%/-0.89% であるとすると、検出されるプロセッサ温度のシステム精度は次のようになります。
および
TruTherm 技術ではトランジスタ用の式 15を使用するので、プロセスの変動を真に反映する非理想性のばらつきは非常に小さくなります。65nm プロセスの Pentium D プロセッサでは、トランジスタ式の非理想性のばらつきは ±0.4% です。TruTherm 技術を使用すると、結果の精度は次のように向上します。
次に説明する誤差項は、サーマル ダイオードとプリント基板トレースの直列抵抗に起因するものです。サーマル ダイオードの直列抵抗は、ほとんどのプロセッサのデータシートに規定されています。65nm プロセスの Pentium D プロセッサでは、これは標準値 4.52Ω に規定されています。LM94 は、90nm プロセスの Pentium D プロセッサの標準的な直列抵抗を調整できます。考慮されていない誤差は Pentium の直列抵抗のばらつき (2.79Ω~6.24Ω または ±1.73Ω) です。LM94 の直列抵抗 (TER) による温度誤差は、次の式で計算します。
RPCB が ±1.73Ω である場合に式 19を計算すると、±1.07℃の直列抵抗のばらつきにより追加の誤差が発生します。誤差のばらつきを相殺するには、個別のサーマル ダイオード デバイスを測定する必要があるため、不可能です。これは非常に困難で、大量生産環境では実用的ではありません。
式 19 は、プリント基板の直列抵抗に起因する付加誤差の計算にも使用できます。PCB 直列抵抗の変動は最小限であるため、誤差項の大部分は常に正であり、LM94 の出力読み取り値からその誤差を減算するだけで相殺できます。