SNIS140F May   2006  – September 2015 LM94022 , LM94022-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 LM94022/-Q1 Transfer Function Gain Selection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Capacitive Loads
      2. 7.4.2 Output Voltage Shift
      3. 7.4.3 Selectable Gain for Optimization and in Situ Testing
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 Application Circuits
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Mounting and Thermal Conductivity
    2. 10.2 Layout Example
    3. 10.3 Output and Noise Considerations
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

7 Detailed Description

7.1 Overview

The LM94022/-Q1 is an analog output temperature sensor with a selectable negative temperature coefficient output (NTC). The temperature-sensing element is comprised of stacked transistor base emitter junctions (thermal diodes) that are forward biased by a current source. The number of stacked thermal diodes determines the output gain or slope. The gain select pins (GS1 and GS0) are simple logic inputs that control the number of stacked thermal diodes thus selecting the output gain as shown in the Table 1 table. The temperature sensing element is buffered by a simple amplifier that drives the output pin. The simple class AB output stage of the amplifier can source or sink current and provides low-impedance, high-current drive.

Table 1. Gain Select Pin Function

GS1 LOGIC LEVEL GS0 LOGIC LEVEL SELECTED AVERAGE GAIN
0 0 –5.5 mV/°C
0 1 –8.2 mV/°C
1 0 –10.9 mV/°C
1 1 –13.6 mV/°C

7.2 Functional Block Diagram

LM94022 LM94022-Q1 FBD_01_SNIS140.gif

7.3 Feature Description

7.3.1 LM94022/-Q1 Transfer Function Gain Selection

The LM94022/-Q1 has four selectable gains, each of which can be selected by the GS1 and GS0 input pins. The output voltage for each gain, across the complete operating temperature range is shown in Table 2. This table is the reference from which the LM94022/-Q1 accuracy specifications (listed in the Electrical Characteristics section) are determined. This table can be used, for example, in a host processor look-up table. A file containing this data is available for download at LM94022 product folder under Tools and Software.

Table 2. LM94022/LM94022-Q1 Transfer Table

TEMPERATURE
(°C)
GS = 00
(mV)
GS = 01
(mV)
GS = 10
(mV)
GS = 11
(mV)
–50 1299 1955 2616 3277
–49 1294 1949 2607 3266
–48 1289 1942 2598 3254
–47 1284 1935 2589 3243
–46 1278 1928 2580 3232
–45 1273 1921 2571 3221
–44 1268 1915 2562 3210
–43 1263 1908 2553 3199
–42 1257 1900 2543 3186
–41 1252 1892 2533 3173
–40 1247 1885 2522 3160
–39 1242 1877 2512 3147
–38 1236 1869 2501 3134
–37 1231 1861 2491 3121
–36 1226 1853 2481 3108
–35 1221 1845 2470 3095
–34 1215 1838 2460 3082
–33 1210 1830 2449 3069
–32 1205 1822 2439 3056
–31 1200 1814 2429 3043
–30 1194 1806 2418 3030
–29 1189 1798 2408 3017
–28 1184 1790 2397 3004
–27 1178 1783 2387 2991
–26 1173 1775 2376 2978
–25 1168 1767 2366 2965
–24 1162 1759 2355 2952
–23 1157 1751 2345 2938
–22 1152 1743 2334 2925
–21 1146 1735 2324 2912
–20 1141 1727 2313 2899
–19 1136 1719 2302 2886
–18 1130 1711 2292 2873
–17 1125 1703 2281 2859
–16 1120 1695 2271 2846
–15 1114 1687 2260 2833
–14 1109 1679 2250 2820
–13 1104 1671 2239 2807
–12 1098 1663 2228 2793
–11 1093 1656 2218 2780
–10 1088 1648 2207 2767
–9 1082 1639 2197 2754
–8 1077 1631 2186 2740
–7 1072 1623 2175 2727
–6 1066 1615 2164 2714
–5 1061 1607 2154 2700
–4 1055 1599 2143 2687
–3 1050 1591 2132 2674
–2 1044 1583 2122 2660
–1 1039 1575 2111 2647
0 1034 1567 2100 2633
1 1028 1559 2089 2620
2 1023 1551 2079 2607
3 1017 1543 2068 2593
4 1012 1535 2057 2580
5 1007 1527 2047 2567
6 1001 1519 2036 2553
7 996 1511 2025 2540
8 990 1502 2014 2527
9 985 1494 2004 2513
10 980 1486 1993 2500
11 974 1478 1982 2486
12 969 1470 1971 2473
13 963 1462 1961 2459
14 958 1454 1950 2446
15 952 1446 1939 2433
16 947 1438 1928 2419
17 941 1430 1918 2406
18 936 1421 1907 2392
19 931 1413 1896 2379
20 925 1405 1885 2365
21 920 1397 1874 2352
22 914 1389 1864 2338
23 909 1381 1853 2325
24 903 1373 1842 2311
25 898 1365 1831 2298
26 892 1356 1820 2285
27 887 1348 1810 2271
28 882 1340 1799 2258
29 876 1332 1788 2244
30 871 1324 1777 2231
31 865 1316 1766 2217
32 860 1308 1756 2204
33 854 1299 1745 2190
34 849 1291 1734 2176
35 843 1283 1723 2163
36 838 1275 1712 2149
37 832 1267 1701 2136
38 827 1258 1690 2122
39 821 1250 1679 2108
40 816 1242 1668 2095
41 810 1234 1657 2081
42 804 1225 1646 2067
43 799 1217 1635 2054
44 793 1209 1624 2040
45 788 1201 1613 2026
46 782 1192 1602 2012
47 777 1184 1591 1999
48 771 1176 1580 1985
49 766 1167 1569 1971
50 760 1159 1558 1958
51 754 1151 1547 1944
52 749 1143 1536 1930
53 743 1134 1525 1916
54 738 1126 1514 1902
55 732 1118 1503 1888
56 726 1109 1492 1875
57 721 1101 1481 1861
58 715 1093 1470 1847
59 710 1084 1459 1833
60 704 1076 1448 1819
61 698 1067 1436 1805
62 693 1059 1425 1791
63 687 1051 1414 1777
64 681 1042 1403 1763
65 676 1034 1391 1749
66 670 1025 1380 1735
67 664 1017 1369 1721
68 659 1008 1358 1707
69 653 1000 1346 1693
70 647 991 1335 1679
71 642 983 1324 1665
72 636 974 1313 1651
73 630 966 1301 1637
74 625 957 1290 1623
75 619 949 1279 1609
76 613 941 1268 1595
77 608 932 1257 1581
78 602 924 1245 1567
79 596 915 1234 1553
80 591 907 1223 1539
81 585 898 1212 1525
82 579 890 1201 1511
83 574 881 1189 1497
84 568 873 1178 1483
85 562 865 1167 1469
86 557 856 1155 1455
87 551 848 1144 1441
88 545 839 1133 1427
89 539 831 1122 1413
90 534 822 1110 1399
91 528 814 1099 1385
92 522 805 1088 1371
93 517 797 1076 1356
94 511 788 1065 1342
95 505 779 1054 1328
96 499 771 1042 1314
97 494 762 1031 1300
98 488 754 1020 1286
99 482 745 1008 1272
100 476 737 997 1257
101 471 728 986 1243
102 465 720 974 1229
103 459 711 963 1215
104 453 702 951 1201
105 448 694 940 1186
106 442 685 929 1172
107 436 677 917 1158
108 430 668 906 1144
109 425 660 895 1130
110 419 651 883 1115
111 413 642 872 1101
112 407 634 860 1087
113 401 625 849 1073
114 396 617 837 1058
115 390 608 826 1044
116 384 599 814 1030
117 378 591 803 1015
118 372 582 791 1001
119 367 573 780 987
120 361 565 769 973
121 355 556 757 958
122 349 547 745 944
123 343 539 734 929
124 337 530 722 915
125 332 521 711 901
126 326 513 699 886
127 320 504 688 872
128 314 495 676 858
129 308 487 665 843
130 302 478 653 829
131 296 469 642 814
132 291 460 630 800
133 285 452 618 786
134 279 443 607 771
135 273 434 595 757
136 267 425 584 742
137 261 416 572 728
138 255 408 560 713
139 249 399 549 699
140 243 390 537 684
141 237 381 525 670
142 231 372 514 655
143 225 363 502 640
144 219 354 490 626
145 213 346 479 611
146 207 337 467 597
147 201 328 455 582
148 195 319 443 568
149 189 310 432 553
150 183 301 420 538

7.4 Device Functional Modes

7.4.1 Capacitive Loads

The LM94022/-Q1 handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the LM94022/-Q1 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 14.

LM94022 LM94022-Q1 20143015.gif Figure 13. LM94022/-Q1 No Decoupling Required for Capacitive Loads Less than 1100 pF
LM94022 LM94022-Q1 20143033.gif Figure 14. LM94022/-Q1 With Series Resistor for Capacitive Loading Greater than 1100 pF
CLOAD MINIMUM RS
1.1 nF to 99 nF 3 kΩ
100 nF to 999 nF 1.5 kΩ
1 μF 800 Ω

7.4.2 Output Voltage Shift

The LM94022/-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the operating range of the device. The location of the shift is determined by the relative levels of VDD and VOUT. The shift typically occurs when VDD – VOUT = 1 V.

This slight shift (a few mV) takes place over a wide change (approximately 200 mV) in VDD or VOUT. Because the shift takes place over a wide temperature change of 5°C to 20°C, VOUT is always monotonic. The accuracy specifications in the Electrical Characteristics table already include this possible shift.

7.4.3 Selectable Gain for Optimization and in Situ Testing

The Gain Select digital inputs can be tied to the rails or can be driven from digital outputs such as microcontroller GPIO pins. In low-supply voltage applications, the ability to reduce the gain to –5.5 mV/°C allows the LM94022/-Q1 to operate over the full –50°C to 150°C range. When a larger supply voltage is present, the gain can be increased as high as –13.6 mV/°C. The larger gain is optimal for reducing the effects of noise (for example, noise coupling on the output line or quantization noise induced by an analog-to-digital converter which may be sampling the LM94022/-Q1 output).

Another application advantage of the digitally selectable gain is the ability to perform dynamic testing of the LM94022/-Q1 while it is running in a system. By toggling the logic levels of the gain select pins and monitoring the resultant change in the output voltage level, the host system can verify the functionality of the LM94022/-Q1.