SNOSBY1C June   1999  – December 2015 LMC567

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Recommended Operating Conditions
    3. 7.3 Thermal Information
    4. 7.4 Electrical Characteristics
    5. 7.5 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Circuit
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Oscillator
      2. 9.3.2 Input
      3. 9.3.3 Loop Filter
      4. 9.3.4 Output Filter
      5. 9.3.5 Output
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation as LM567
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Timing Components
        2. 10.2.2.2 Bandwidth
        3. 10.2.2.3 Output Filter
        4. 10.2.2.4 Supply Decoupling
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input voltage IN 2 Vp–p
Supply voltage VCC 10 V
Output voltage OUT 13 V
Output current OUT 30 mA
Package dissipation 500 mW
Operating temperature, TA –25 125 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

7.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC Supply voltage 2 9 V
FIN Input frequency 1 500 Hz
TA Operating temperature –25 125 °C

7.3 Thermal Information

THERMAL METRIC(1) LMC567 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 111.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 59.2 °C/W
RθJB Junction-to-board thermal resistance 52.2 °C/W
ψJT Junction-to-top characterization parameter 13.5 °C/W
ψJB Junction-to-board characterization parameter 51.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.4 Electrical Characteristics

Test Circuit, TA = 25°C, Vs = 5 V, RtCt #2, Sw. 1 Pos. 0, and no input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I4 Power supply current RtCt #1, quiescent
or activated
Vs = 2 V 0.3 mAdc
Vs = 5 V 0.5 0.8
Vs = 9 V 0.8 1.3
V3 Input D.C. bias 0 mVdc
R3 Input resistance 40
I8 Output leakage 1 100 nAdc
f0 Center frequency,
Fosc ÷ 2
RtCt #2, measure oscillator
Frequency and divide by 2
Vs = 2 V 98 kHz
Vs = 5 V 92 103 113
Vs = V 105
Δf0 Center frequency
shift with supply
Equation 1. LMC567 00867004.gif
1 2 %/V
Vin Input threshold Set input frequency equal to f0 measured above. Increase input level until pin 8 goes low. Vs = 2 V 11 20 27 mVrms
Vs = 5 V 17 30 45
Vs = 9 V 45
ΔVin Input hysteresis Starting at input threshold, decrease input
level until pin 8 goes high.
1.5 mVrms
V8 Output sat voltage Input level > threshold
Choose RL for specified I8.
I8 = 2 mA 0.06 0.15 Vdc
I8 = 20 mA 0.7
L.D.B.W. Largest detection
bandwidth
Measure Fosc with Sw. 1 in
Pos. 0, 1, and 2;
Equation 2. LMC567 00867005.gif
Vs = 2 V 7% 11% 15%
Vs = 5 V 11% 14% 17%
Vs = 9 V 15%
ΔBW Bandwidth skew
Equation 3. LMC567 00867006.gif
0% ±1.0%
fmax Highest center frequency RtCt #3
Measure oscillator frequency and divide by 2.
700 kHz
Vin Input threshold at fmax Set input frequency equal to fmax measured above. Increase input level until pin 8 goes low. 35 mVrms

7.5 Typical Characteristics

LMC567 00867003.png Figure 1. Supply Current vs Operating Frequency
LMC567 00867008.png Figure 3. Largest Detection Bandwidth vs Temperature
LMC567 00867010.png Figure 5. Frequency Drift With Temperature
LMC567 00867007.png Figure 2. Bandwidth vs Input Signal Level
LMC567 00867009.png Figure 4. Bandwidth as a Function of C2
LMC567 00867011.png Figure 6. Frequency Drift With Temperature