JAJSIG5C May   2019  – December 2024 LMG1025-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stage
      2. 6.3.2 Output Stage
      3. 6.3.3 Bias Supply and Under Voltage Lockout
      4. 6.3.4 Overtemperature Protection (OTP)
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Handling Ground Bounce
        2. 7.2.2.2 Creating Nanosecond Pulse
        3. 7.2.2.3 VDD and Overshoot
        4. 7.2.2.4 Operating at Higher Frequency
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Gate Drive Loop Inductance and Ground Connection
      2. 9.1.2 Bypass Capacitor
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 Trademarks
    6. 10.6 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DEE|6
サーマルパッド・メカニカル・データ

Creating Nanosecond Pulse

LMG1025-Q1 can be used to drive pulses of nano seconds duration on to a capacitive load. LMG1025-Q1 can be driven with a equivalently short pulse on one input pin. However, this takes a sufficiently strong digital driver and careful consideration of the routing parasitics from digital output to input of LMG1025-Q1. Two inputs and included AND gate in LMG1025-Q1 provide an alternate method to create a short pulse at the LMG1025-Q1 output. Starting with both IN+ and IN– at low, taking IN+ high will cause the output to go high. Now if IN– is taken high as well, output will be pulled low. So a digital signal and its delayed version can be applied to IN+ and IN– respectively to create a pulse at the output with width corresponding to the delay between the signals, as shown in Figure 7-5. The delay can be digitally controlled in the nanosecond range. This method alleviates the requirements for driving the input of LMG1025-Q1. If a separate delayed version of the digital signal is not available, an RC delay followed by a buffer can be used to derive the second signal. Optionally, if LMG1025-Q1 must be driven with a single short duration pulse, that pulse can itself be generated using another LMG1025-Q1 by the above method to meet drive requirements.

LMG1025-Q1 Timing Diagram To Create Short PulsesFigure 7-5 Timing Diagram To Create Short Pulses