JAJSRX4 May   2024 LMG2650

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
  7. Parameter Measurement Information
    1. 6.1 GaN Power FET Switching Parameters
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  GaN Power FET Switching Capability
      2. 7.3.2  Turn-On Slew-Rate Control
      3. 7.3.3  Current-Sense Emulation
      4. 7.3.4  Bootstrap Diode Function
      5. 7.3.5  Input Control Pins (EN, INL, INH, GDH)
      6. 7.3.6  INL - INH Interlock
      7. 7.3.7  AUX Supply Pin
        1. 7.3.7.1 AUX Power-On Reset
        2. 7.3.7.2 AUX Under-Voltage Lockout (UVLO)
      8. 7.3.8  BST Supply Pin
        1. 7.3.8.1 BST Power-On Reset
        2. 7.3.8.2 BST Under-Voltage Lockout (UVLO)
      9. 7.3.9  Overcurrent Protection
      10. 7.3.10 Overtemperature Protection
      11. 7.3.11 Fault Reporting
    4. 7.4 Device Functional Modes
  9. Device and Documentation Support
    1. 8.1 ドキュメントの更新通知を受け取る方法
    2. 8.2 サポート・リソース
    3. 8.3 Trademarks
    4. 8.4 静電気放電に関する注意事項
    5. 8.5 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
  • RFB|19
サーマルパッド・メカニカル・データ
発注情報

GaN Power FET Switching Capability

Due to the silicon FET’s long reign as the dominant power-switch technology, many designers are unaware that the nameplate drain-source voltage cannot be used as an equivalent point to compare devices across technologies. The nameplate drain-source voltage of a silicon FET is set by the avalanche breakdown voltage. The nameplate drain-source voltage of a GaN FET is set by the long term compliance to data sheet specifications.

Exceeding the nameplate drain-source voltage of a silicon FET can lead to immediate and permanent damage. Meanwhile, the breakdown voltage of a GaN FET is much higher than the nameplate drain-source voltage. For example, the breakdown drain-source voltage of the LMG2650 GaN power FET is more than 800V which allows the LMG2650 to operate at conditions beyond an identically nameplate rated silicon FET.

The LMG2650 GaN power FET switching capability is explained with the assistance of Figure 7-1. The figure shows the drain-source voltage versus time for the LMG2650 GaN power FET for three distinct switch cycles in a switching application. No claim is made about the switching frequency or duty cycle. The LMG2650 GaN power FETs can be turned on in continuous-conduction mode (CCM) hard switching, zero-voltage switching (ZVS), and discontinuous-conduction mode (DCM) switching conditions.

LMG2650 GaN Power FET Switching
                    Capability Figure 7-1 GaN Power FET Switching Capability

Each cycle starts before t0 with the FET in the on state. At t0 the GaN FET turns off and parasitic elements cause the drain-source voltage to ring at a high frequency. The high frequency ringing has damped out by t1. Between t1 and t2 the FET drain-source voltage is set by the characteristic response of the switching application. The characteristic is shown as a flat line (plateau), but other responses are possible. At t2 the GaN FET turns on. For rare surge events, the transient ring voltage is limited to 800V and the plateau voltage is limited to 720V.