JAJSDE7 June 2017 LMH6644-MIL
PRODUCTION DATA.
No matter how low an Rf is selected, there is a need for Cf in order to stabilize the circuit. The reason for this is that the op amp input capacitance and Q1 equivalent collector capacitance together (CIN) will cause additional phase shift to the signal fed back to the inverting node. Cf will function as a zero in the feedback path counteracting the effect of the CIN and acting to stabilized the circuit. By proper selection of Cf such that the Op Amp open loop gain is equal to the inverse of the feedback factor at that frequency, the response is optimized with a theoretical 45° phase margin where GBWP is the Gain Bandwidth Product of the Op Amp, optimized as such, the I-V converter will have a theoretical pole, fp, at: (2) With Op Amp input capacitance of 3pF and an estimate for Q1 output capacitance of about 3 pF as well, CIN = 6 pF. From the typical performance plots, GBWP is approximately 57 MHz. Therefore, with Rf = 1k, from Equation 2 and Equation 3 : Cf = ∼4.1 pF and fp = 39 MHz.
For this example, optimum Cf was empirically determined to be around 5 pF. This time domain response is shown in Figure 58 showing about 9 ns rise/fall times, corresponding to about 39 MHz for fp. The overall supply current from the +5-V supply is around 5 mA with no load.