JAJSSR6 January   2024 LMK5C33216AS1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Diagrams
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Differential Voltage Measurement Terminology
    2. 6.2 Output Clock Test Configurations
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 PLL Architecture Overview
      2. 7.2.2 DPLL
        1. 7.2.2.1 Independent DPLL Operation
        2. 7.2.2.2 Cascaded DPLL Operation
        3. 7.2.2.3 APLL Cascaded with DPLL
      3. 7.2.3 APLL-Only Mode
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Input (XO)
      2. 7.3.2  Reference Inputs
      3. 7.3.3  Clock Input Interfacing and Termination
      4. 7.3.4  Reference Input Mux Selection
        1. 7.3.4.1 Automatic Input Selection
        2. 7.3.4.2 Manual Input Selection
      5. 7.3.5  Hitless Switching
        1. 7.3.5.1 Hitless Switching With Phase Cancellation
        2. 7.3.5.2 Hitless Switching With Phase Slew Control
        3. 7.3.5.3 Hitless Switching With 1-PPS Inputs
      6. 7.3.6  Gapped Clock Support on Reference Inputs
      7. 7.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 7.3.7.1 XO Input Monitoring
        2. 7.3.7.2 Reference Input Monitoring
          1. 7.3.7.2.1 Reference Validation Timer
          2. 7.3.7.2.2 Frequency Monitoring
          3. 7.3.7.2.3 Missing Pulse Monitor (Late Detect)
          4. 7.3.7.2.4 Runt Pulse Monitor (Early Detect)
          5. 7.3.7.2.5 Phase Valid Monitor for 1-PPS Inputs
        3. 7.3.7.3 PLL Lock Detectors
        4. 7.3.7.4 Tuning Word History
        5. 7.3.7.5 Status Outputs
        6. 7.3.7.6 Interrupt
      8. 7.3.8  PLL Relationships
        1. 7.3.8.1  PLL Frequency Relationships
          1. 7.3.8.1.1 APLL Phase Detector Frequency
          2. 7.3.8.1.2 APLL VCO Frequency
          3. 7.3.8.1.3 DPLL TDC Frequency
          4. 7.3.8.1.4 DPLL VCO Frequency
          5. 7.3.8.1.5 Clock Output Frequency
        2. 7.3.8.2  Analog PLLs (APLL1, APLL2, APLL3)
        3. 7.3.8.3  APLL Reference Paths
          1. 7.3.8.3.1 APLL XO Doubler
          2. 7.3.8.3.2 APLL XO Reference (R) Divider
        4. 7.3.8.4  APLL Phase Frequency Detector (PFD) and Charge Pump
        5. 7.3.8.5  APLL Feedback Divider Paths
          1. 7.3.8.5.1 APLL N Divider With SDM
        6. 7.3.8.6  APLL Loop Filters (LF1, LF2, LF3)
        7. 7.3.8.7  APLL Voltage-Controlled Oscillators (VCO1, VCO2, VCO3)
          1. 7.3.8.7.1 VCO Calibration
        8. 7.3.8.8  APLL VCO Clock Distribution Paths
        9. 7.3.8.9  DPLL Reference (R) Divider Paths
        10. 7.3.8.10 DPLL Time-to-Digital Converter (TDC)
        11. 7.3.8.11 DPLL Loop Filter (DLF)
        12. 7.3.8.12 DPLL Feedback (FB) Divider Path
      9. 7.3.9  Output Clock Distribution
      10. 7.3.10 Output Channel Muxes
      11. 7.3.11 Output Dividers (OD)
      12. 7.3.12 SYSREF/1-PPS
      13. 7.3.13 Output Delay
      14. 7.3.14 Clock Outputs (OUTx_P/N)
        1. 7.3.14.1 Differential Output
        2. 7.3.14.2 LVCMOS Output
        3. 7.3.14.3 SYSREF/1-PPS Output Replication
        4. 7.3.14.4 Output Auto-Mute During LOL
      15. 7.3.15 Glitchless Output Clock Start-Up
      16. 7.3.16 Clock Output Interfacing and Termination
      17. 7.3.17 Output Synchronization (SYNC)
      18. 7.3.18 Zero-Delay Mode (ZDM)
      19. 7.3.19 Time Elapsed Counter (TEC)
        1. 7.3.19.1 Configuring TEC Functionality
        2. 7.3.19.2 SPI as a Trigger Source
        3. 7.3.19.3 GPIO Pin as a TEC Trigger Source
          1. 7.3.19.3.1 An Example: Making a Time Elapsed Measurement Using TEC and GPIO1 as Trigger
        4. 7.3.19.4 TEC Timing
        5. 7.3.19.5 Other TEC Behavior
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Start-Up
        1. 7.4.1.1 ROM Selection
        2. 7.4.1.2 EEPROM Overlay
      2. 7.4.2 DPLL Operating States
        1. 7.4.2.1 Free-Run
        2. 7.4.2.2 Lock Acquisition
        3. 7.4.2.3 DPLL Locked
        4. 7.4.2.4 Holdover
      3. 7.4.3 PLL Start-Up Sequence
      4. 7.4.4 Digitally-Controlled Oscillator (DCO) Frequency and Phase Adjustment
        1. 7.4.4.1 DPLL DCO Control
          1. 7.4.4.1.1 DPLL DCO Relative Adjustment Frequency Step Size
          2. 7.4.4.1.2 APLL DCO Frequency Step Size
      5. 7.4.5 APLL Frequency Control
      6. 7.4.6 DPLL Programmable Phase Delay
    5. 7.5 Programming
      1. 7.5.1 Interface and Control
      2. 7.5.2 I2C Serial Interface
        1. 7.5.2.1 I2C Block Register Transfers
      3. 7.5.3 SPI Serial Interface
        1. 7.5.3.1 SPI Block Register Transfer
      4. 7.5.4 Register Map Generation
      5. 7.5.5 General Register Programming Sequence
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Start-Up Sequence
      2. 8.1.2 Power Down (PD#) Pin
      3. 8.1.3 Strap Pins for Start-Up
      4. 8.1.4 Pin States
      5. 8.1.5 ROM and EEPROM
      6. 8.1.6 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 8.1.6.1 Power-On Reset (POR) Circuit
        2. 8.1.6.2 Powering Up From a Single-Supply Rail
        3. 8.1.6.3 Power Up From Split-Supply Rails
        4. 8.1.6.4 Non-Monotonic or Slow Power-Up Supply Ramp
      7. 8.1.7 Slow or Delayed XO Start-Up
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Supply Bypassing
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Reliability
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Clock Tree Architect Programming Software
        2. 9.1.1.2 Texas Instruments Clocks and Synthesizers (TICS) Pro Software
        3. 9.1.1.3 PLLatinum™ Simulation Tool
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

PLL Lock Detectors

The loss-of-lock (LOL) status is available for APLL1, APLL2, APLL3, DPLL1, DPLL2, and DPLL3. The APLLs are monitored for loss-of-frequency lock only. The DPLL can be monitored for both loss-of-frequency lock (LOFL) and loss-of-phase lock (LOPL). The DPLL lock threshold and loss-of-lock threshold are programmable for both LOPL and LOFL detectors. In the case when APLL3 loss-of-frequency lock is selected, then DPLL3 is monitored for LOPL only. DPLL3 must be enabled for the digital monitoring of APLL3 VCBO lock detect.

The DPLL frequency lock detector will clear its LOFL flag when the DPLL's frequency error relative to the selected reference input is less than the lock ppm threshold. Otherwise, the lock detector will set the LOFL flag when the DPLL's frequency error is greater than the unlock ppm threshold. The ppm delta between the lock and unlock thresholds provides hysteresis to prevent the LOFL flag from toggling when the DPLL frequency error is crossing these thresholds.

The APLL3 frequency digital lock detector will clear its LOFL flag when the APLL3 VCBO frequency error relative to the XO reference input is less than the lock ppm threshold. Otherwise, the lock detector will set the LOFL flag when the VCBO's frequency error is greater than the unlock ppm threshold. Make sure to take the ppm frequency tolerance of the XO input reference into account when setting the VCBO frequency lock and unlock thresholds. The ppm delta between the lock and unlock thresholds provides hysteresis to prevent the LOFL flag from toggling when the VCBO frequency error is crossing these thresholds.

A measurement accuracy (ppm) and averaging factor are used in computing the frequency lock detector register settings. A higher measurement accuracy (smaller ppm) or higher averaging factor will increase the measurement delay to set or clear the LOFL flag. Higher averaging may be useful when locking to an input with high wander or when the PLL is configured with a narrow loop bandwidth. Note that higher averaging reduces the maximum frequency ppm thresholds that can be configured.

The DPLL phase lock detector will clear its LOPL flag when the phase error of the DPLL is less than the phase lock threshold. Otherwise, the lock detector will set the LOPL flag when the phase error is greater than the phase unlock threshold.

Users can observe the APLL and DPLL lock detector flags through the status pins and the status bits.

GUID-20220919-SS0I-FKQR-K7SX-KL6FFDVZ08DN-low.svg Figure 7-18 PLL Lock Detectors and History Monitor