SNAS855D November   2023  – June 2024 LMKDB1102 , LMKDB1104 , LMKDB1108 , LMKDB1120 , LMKDB1202 , LMKDB1204

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SMBus Timing Requirements
    7. 6.7 SBI Timing Requirements
    8. 6.8 Timing Diagrams
    9. 6.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Features
        1. 8.3.1.1 Running Input Clocks When Device is Powered Off
        2. 8.3.1.2 Fail-Safe Inputs
        3. 8.3.1.3 Input Configurations
          1. 8.3.1.3.1 Internal Termination for Clock Inputs
          2. 8.3.1.3.2 AC-Coupled or DC-Coupled Clock Inputs
      2. 8.3.2 Flexible Power Sequence
        1. 8.3.2.1 PWRDN# Assertion and Deassertion
        2. 8.3.2.2 OE# Assertion and Deassertion
        3. 8.3.2.3 PWRGD Assertion
        4. 8.3.2.4 Clock Input and PWRGD/PWRDN# Behaviors When Device Power is Off
      3. 8.3.3 LOS and OE
        1. 8.3.3.1 Additional OE# Pins for LMKDB1120 and Backward Compatibility
        2. 8.3.3.2 Synchronous OE
        3. 8.3.3.3 OE Control
        4. 8.3.3.4 Automatic Output Disable
        5. 8.3.3.5 LOS Detection
      4. 8.3.4 Output Features
        1. 8.3.4.1 Output Banks
        2. 8.3.4.2 Double Termination
        3. 8.3.4.3 Programmable Output Slew Rate
          1. 8.3.4.3.1 Slew Rate Control through Pin
          2. 8.3.4.3.2 Slew Rate Control through SMBus
        4. 8.3.4.4 Programmable Output Swing
        5. 8.3.4.5 Accurate Output Impedance
        6. 8.3.4.6 Programmable Output Impedance
    4. 8.4 Device Functional Modes
      1. 8.4.1 SMBus Mode
      2. 8.4.2 SBI Mode
      3. 8.4.3 Pin Mode
  10. Register Maps
    1. 9.1 LMKDB1120 Registers
    2. 9.2 LMKDB1108 Registers
    3. 9.3 LMKDB1104 Registers
    4. 9.4 LMKDB1204 Registers
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power Supply Recommendations

Place a 0.1-μF capacitor close to every power supply pin. To minimize noise on VDDA, VDD_IN0 and VDD_IN1, place a 2.2-Ω resistor next to the pins. All supply pins can be grouped onto one power rail. TI recommends a Ferrite Bead and a 10-µF capacitor to GND for the entire chip. Figure 10-4 and Figure 10-5 shows an example power schematic.

LMKDB1102 LMKDB1202 LMKDB1104 LMKDB1204 LMKDB1108 LMKDB1120 Power Supply Recommendation for
            LMKDB11XX BufferFigure 10-4 Power Supply Recommendation for LMKDB11XX Buffer
LMKDB1102 LMKDB1202 LMKDB1104 LMKDB1204 LMKDB1108 LMKDB1120 Power Supply Recommendation for
        LMKDB12XX MUXFigure 10-5 Power Supply Recommendation for LMKDB12XX MUX

If both inputs are used for a MUX device and the two inputs have different frequencies (including PCIe SSC and PCIe No SSC), then isolate the inputs and corresponding output banks by adding more Ferrite Beads.