JAJSHL8B June   2012  – June 2019 LMR12015 , LMR12020

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション回路
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Descriptions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Ratings
    3. 6.3 Electrical Characteristics
    4. 6.4 Typical Performance Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Boost Function
      2. 7.3.2  Low Input Voltage Considerations
      3. 7.3.3  High Output Voltage Considerations
      4. 7.3.4  Frequency Synchronization
      5. 7.3.5  Current Limit
      6. 7.3.6  Frequency Foldback
      7. 7.3.7  Soft Start
      8. 7.3.8  Output Overvoltage Protection
      9. 7.3.9  Undervoltage Lockout
      10. 7.3.10 Thermal Shutdown
    4. 7.4 Device Operation Modes
      1. 7.4.1 Enable Pin / Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Detailed Design Procedure
        1. 8.2.1.1  Custom Design With WEBENCH® Tools
        2. 8.2.1.2  Inductor Selection
          1. 8.2.1.2.1 Inductor Calculation Example
          2. 8.2.1.2.2 Inductor Material Selection
        3. 8.2.1.3  Input Capacitor
        4. 8.2.1.4  Output Capacitor
        5. 8.2.1.5  Catch Diode
        6. 8.2.1.6  Boost Diode (Optional)
        7. 8.2.1.7  Boost Capacitor
        8. 8.2.1.8  Output Voltage
        9. 8.2.1.9  Feedforward Capacitor (Optional)
        10. 8.2.1.10 Calculating Efficiency and Junction Temperature
          1. 8.2.1.10.1 Schottky Diode Conduction Losses
          2. 8.2.1.10.2 Inductor Conduction Losses
          3. 8.2.1.10.3 MOSFET Conduction Losses
          4. 8.2.1.10.4 MOSFET Switching Losses
          5. 8.2.1.10.5 IC Quiescent Losses
          6. 8.2.1.10.6 MOSFET Driver Losses
          7. 8.2.1.10.7 Total Power Losses
          8. 8.2.1.10.8 Efficiency Calculation Example
          9. 8.2.1.10.9 Calculating the LMR2015/20 Junction Temperature
      2. 8.2.2 Application Curves
      3. 8.2.3 LMR12015/20 Circuit Examples
  9. Layout
    1. 9.1 Layout Considerations
      1. 9.1.1 Compact Layout
      2. 9.1.2 Ground Plane and Shape Routing
      3. 9.1.3 FB Loop
      4. 9.1.4 PCB Summary
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイス・サポート
      1. 10.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 10.1.2 開発サポート
        1. 10.1.2.1 WEBENCH®ツールによるカスタム設計
    2. 10.2 関連リンク
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 コミュニティ・リソース
    5. 10.5 商標
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 Glossary
  11. 11メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Inductor Material Selection

When selecting an inductor, make sure that it is capable of supporting the peak output current without saturating. Inductor saturation will result in a sudden reduction in inductance and prevent the regulator from operating correctly. To prevent the inductor from saturating over the entire –40°C to +125°C range, pick an inductor with a saturation current higher than the upper limit of ICL listed in Electrical Characteristics.

Ferrite core inductors are recommended to reduce AC loss and fringing magnetic flux. The drawback of ferrite core inductors is their quick saturation characteristic. The current limit circuit has a propagation delay and so is oftentimes not fast enough to stop a saturated inductor from going above the current limit. This has the potential to damage the internal switch. To prevent a ferrite core inductor from getting into saturation, the inductor saturation current rating should be higher than the switch current limit ICL. The LMR12015/20 is quite robust in handling short pulses of current that are a few amps above the current limit. Saturation protection is provided by a second current limit which is 30% higher than the cycle-by-cycle current limit. When the saturation protection is triggered thedevice turns off the output switch and attempt to soft start. (When a compromise has to be made, pick an inductor with a saturation current just above the lower limit of the ICL.) Be sure to validate the short-circuit protection over the intended temperature range.

An inductor's saturation current is usually lower when hot. Consult the inductor vendor if the saturation current rating is only specified at room temperature.

Soft saturation inductors such as the iron powder types can also be used. Such inductors do not saturate suddenly and therefore are safer when there is a severe overload or even shorted output. Their physical sizes are usually smaller than the Ferrite core inductors. The downside is their fringing flux and higher power dissipation due to relatively high AC loss, especially at high frequencies.