JAJSPY5 December   2023 LMR66410-Q1 , LMR66420-Q1 , LMR66430-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Enable, Start-Up, and Shutdown
      2. 7.3.2  External CLK SYNC (With MODE/SYNC)
        1. 7.3.2.1 Pulse-Dependent MODE/SYNC Pin Control
      3. 7.3.3  Power-Good Output Operation
      4. 7.3.4  Internal LDO, VCC, and VOUT/FB Input
      5. 7.3.5  Bootstrap Voltage and VBOOT-UVLO (BOOT Terminal)
      6. 7.3.6  Output Voltage Selection
      7. 7.3.7  Spread Spectrum
      8. 7.3.8  Soft Start and Recovery from Dropout
        1. 7.3.8.1 Recovery from Dropout
      9. 7.3.9  Current Limit and Short Circuit
      10. 7.3.10 Thermal Shutdown
      11. 7.3.11 Input Supply Current
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
        1. 7.4.3.1 CCM Mode
        2. 7.4.3.2 Auto Mode – Light Load Operation
          1. 7.4.3.2.1 Diode Emulation
          2. 7.4.3.2.2 Frequency Reduction
        3. 7.4.3.3 FPWM Mode – Light Load Operation
        4. 7.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 7.4.3.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design 1 - Automotive Synchronous Buck Regulator at 2.2 MHz
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Choosing the Switching Frequency
          2. 8.2.1.2.2  Setting the Output Voltage
            1. 8.2.1.2.2.1 VOUT / FB for Adjustable Output
          3. 8.2.1.2.3  Inductor Selection
          4. 8.2.1.2.4  Output Capacitor Selection
          5. 8.2.1.2.5  Input Capacitor Selection
          6. 8.2.1.2.6  CBOOT
          7. 8.2.1.2.7  VCC
          8. 8.2.1.2.8  CFF Selection
          9. 8.2.1.2.9  External UVLO
          10. 8.2.1.2.10 Maximum Ambient Temperature
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 - Automotive Synchronous Buck Regulator at 400 kHz
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Ground and Thermal Considerations
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 サード・パーティ製品に関する免責事項
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Typical Application

For the circuit schematic, bill of materials, PCB layout files, and test results of an LMR664x0-Q1 implementation see the LMR66430-2EVM. As a quick-start guide, Table 8-1 and Table 8-4 provide typical component values for a range of the most common output voltages.

Table 8-1 Typical External Component Values for Adjustable Output LMR66430-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (kΩ)(3) RFBB (kΩ) CIN CBOOT CVCC CFF(4)
400 3.3 10 3 × 22 µF 60 µF 33.2 14.3 4.7 µF 100 nF 1 µF 100 pF
2200 3.3 2.2 3 × 22 µF 60 µF 33.2 14.3 4.7 µF 100 nF 1 µF DNP
400 5 10 3 × 22 µF 60 µF 49.9 12.4 4.7 µF 100 nF 1 µF 100 pF
2200 5 2.2 3 × 22 µF 60 µF 49.9 12.4 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
For RFBT and RFBB values outside the range stated above, see Section 8.2.1.2.2.1.
See Section 8.2.1.2.8 for more information.
Table 8-2 Typical External Component Values for Adjustable Output LMR66420-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (kΩ)(3) RFBB (kΩ) CIN CBOOT CVCC CFF(4)
400 3.3 6.8 3 × 22 µF 60 µF 33.2 14.3 4.7 µF 100 nF 1 µF 100 pF
2200 3.3 2.2 2 × 22 µF 40 µF 33.2 14.3 4.7 µF 100 nF 1 µF DNP
400 5 6.8 3 × 22 µF 60 µF 49.9 12.4 4.7 µF 100 nF 1 µF 100 pF
2200 5 2.2 2 × 22 µF 40 µF 49.9 12.4 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
For RFBT and RFBB values outside the range stated above, see Section 8.2.1.2.2.1.
See Section 8.2.1.2.8 for more information.
Table 8-3 Typical External Component Values for Adjustable Output LMR66410-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (kΩ)(3) RFBB (kΩ) CIN CBOOT CVCC CFF(4)
400 3.3 22 2 × 22 µF 40 µF 33.2 14.3 4.7 µF 100 nF 1 µF 100 pF
2200 3.3 4.7 1 × 22 µF 20 µF 33.2 14.3 4.7 µF 100 nF 1 µF DNP
400 5 22 2 × 22 µF 40 µF 49.9 12.4 4.7 µF 100 nF 1 µF 100 pF
2200 5 4.7 1 × 22 µF 20 µF 49.9 12.4 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
For RFBT and RFBB values outside the range stated above, see Section 8.2.1.2.2.1.
See Section 8.2.1.2.8 for more information.
Table 8-4 Typical External Component Values for Fixed Output LMR66430-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (Ω) RFBB (Ω)(3) CIN CBOOT CVCC CFF
400 3.3 10 3 × 22 µF 60 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 3.3 2.2 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
400 5 10 3 × 22 µF 60 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 5 2.2 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
DNP = Do Not Populate.
Table 8-5 Typical External Component Values for Fixed Output LMR66420-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (kΩ) RFBB (kΩ)(3) CIN CBOOT CVCC CFF
400 3.3 6.8 3 × 22 µF 60 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 3.3 2.2 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
400 5 6.8 3 × 22 µF 60 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 5 2.2 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
DNP = Do Not Populate.
Table 8-6 Typical External Component Values for Fixed Output LMR66410-Q1
ƒSW (kHz)(1) VOUT (V) L (µH) Nominal COUT (Rated Capacitance) Minimum COUT(Effective Capacitance)(2) RFBT (kΩ) RFBB (kΩ)(3) CIN CBOOT CVCC CFF
400 3.3 22 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 3.3 4.7 1 × 22 µF 20 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
400 5 22 2 × 22 µF 40 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
2200 5 4.7 1 × 22 µF 20 µF 0 DNP 4.7 µF 100 nF 1 µF DNP
Inductor values are calculated based on typical VIN = 12 V.
Minimum COUT values take into account the effects of DC bias voltage and temperature on the actual capacitance value.
DNP = Do Not Populate.