SNVS458D June   2007  – October 2016 LP55281

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 I2C Timing Requirements
    8. 6.8 Boost Converter Typical Characteristics
    9. 6.9 RGB Driver Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Magnetic Boost DC-DC Converter
        1. 7.3.1.1 Boost Standby Mode
        2. 7.3.1.2 Boost Output Voltage Control
        3. 7.3.1.3 Boost Frequency Control
      2. 7.3.2 Functionality of RGB LED Outputs (R1-4, G1-4, B1-4)
        1. 7.3.2.1 PWM Control Timing
      3. 7.3.3 Audio Synchronization
        1. 7.3.3.1 Control of Audio Synchronization
        2. 7.3.3.2 ALED Driver
          1. 7.3.3.2.1 Adjustment of ALED Driver
      4. 7.3.4 LED Test Interface
        1. 7.3.4.1 LED Test Procedure
        2. 7.3.4.2 LED Test Time Estimation
      5. 7.3.5 7-V Shielding
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes Of Operation
    5. 7.5 Programming
      1. 7.5.1 SPI Interface
      2. 7.5.2 I2C Compatible Serial Bus Interface
        1. 7.5.2.1 Interface Bus Overview
        2. 7.5.2.2 Data Transactions
        3. 7.5.2.3 Acknowledge Cycle
        4. 7.5.2.4 Acknowledge After Every Byte Rule
        5. 7.5.2.5 Addressing Transfer Formats
        6. 7.5.2.6 Control Register Write Cycle
        7. 7.5.2.7 Control Register Read Cycle
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Recommended External Components
          1. 8.2.2.1.1 Output Capacitor, COUT
          2. 8.2.2.1.2 List Of Recommended External Components
          3. 8.2.2.1.3 Input Capacitor, CIN
          4. 8.2.2.1.4 Output Diode, D1
          5. 8.2.2.1.5 Inductor, L
      3. 8.2.3 Application Curves
    3. 8.3 Initialization Set Up Example
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Boost Output Capacitor Placement
      2. 10.1.2 Schottky Diode Placement
      3. 10.1.3 Inductor Placement
      4. 10.1.4 Boost Input Capacitor Placement
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
V (SW, FB, R1-4, G1-4, B1-4, ALED)(4) (5) –0.3 7.2 V
VVDD1, VVDD2, VVDDIO, VVDDA –0.3 6 V
Voltage on ASE1-2, IRT, IRGB, VREF –0.3 to VVDD1 + 0.3 V with 6 V maximum
Voltage on logic pins –0.3 to VVDDIO + 0.3 V with 6 V maximum
V (all other pins): voltage to GND –0.3 6
I (VREF) 10 µA
I (R1-4, G1-4, B1-4) 100 mA
Continuous power dissipation(6) Internally limited
Junction temperature, TJ-MAX 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to the potential at the GND pins.
If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
Battery/Charger voltage must be above 6 V, and no more than 10% of the operational lifetime.
Voltage tolerance of LP55281 above 6 V relies on fact that VVDD1 and VVDD2 (2.8 V) are available (ON) at all conditions. If VVDD1 and VVDD2 are not available (ON) at all conditions, Texas Instruments does not ensure any parameters or reliability for this device.
Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 160°C (typical) and disengages at TJ = 140°C (typical)

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process..

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN NOM MAX UNIT
V (SW, FB, R1-4, G1-4, B1-4, ALED) 0 6 V
VVDD1,2 with external LDO 2.7 5.5 V
VVDD1,2 with internal LDO 3 5.5 V
VDDA 2.7 2.9 V
VVDDIO 1.65 VVDD1
Voltage on ASE1-2 0.1 V to VVDDA – 0.1 V
Recommended load current 0 300 mA
Junction temperature, TJ –30 125 °C
Ambient temperature, TA (2) –30 85 °C
All voltages are with respect to the potential at the GND pins.
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA x PD-MAX).

Thermal Information

THERMAL METRIC(1) LP55281 UNIT
YPG (DSGBA) YZR (DSGBA)
36 PINS 36 PINS
RθJA Junction-to-ambient thermal resistance 48.9 49.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.2 0.2 °C/W
RθJB Junction-to-board thermal resistance 10.6 10.8 °C/W
ψJT Junction-to-top characterization parameter 0.1 0.1 °C/W
ψJB Junction-to-board characterization parameter 10.4 10.6 °C/W
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

Electrical Characteristics

Unless otherwise noted, specifications apply to Functional Block Diagram with: VVDD1 = VVDD2 = 3.6 V, VVDDIO = 2.8 V, CVDD = CVDDIO = 100 nF, COUT = CIN = 10 µF, CVDDA= 1 µF, CREF = 100 nF, L1 = 4.7 µH, RRGB = 8.2 kΩ and RRT = 82 kΩ, and limits are for TJ = 25°C.(1)(2) (3).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IVDD Standby supply current (VDD1 + VDD2 + leakage to SW, FB, RGB1-4, ALED) NSTBY = L
SCK = SS = SI = H
NRST = L
1 µA
NSTBY = L
SCK = SS = SI = H
NRST = L
–30°C < TA < 85°C
10
No-boost supply current (VDD1 + VDD2) NSTBY = H, EN_BOOST = L
SCK = SS = SI = H
Audio synchronization and LEDs OFF
350 µA
No-load supply current (VDD1 + VDD2) NSTBY = H, EN_BOOST = H, SCK = SS = SI = H
Audio synchronization and LEDs OFF
Autoload OFF
0.6 mA
Total RGB drivers quiescent current (VDD1 + VDD2) EN_RGBx = H 250 µA
ALED driver current (VDD1 + VDD2) ALED[7:0] = FFh 180 µA
ALED[7:0] = 00h 0 µA
Audio synchronization current (VDD1 + VDD2) Audio synchronization ON
VDD1,2 = 2.8 V
390 µA
Audio synchronization ON
VDD1,2 = 3.6 V
700 µA
IDDIO VDDIO standby supply current NSTBY = L
SCK = SS = SI = H
–30°C < TA < 85°C
1 µA
VDDIO supply current 1 MHz SCK frequency in SPI modeCL = 50 pF at SO pin 20 µA
VDDA Output voltage of internal LDO for analog parts See(4) –3% 2.8 3% V
MAGNETIC BOOST DC-DC CONVERTER ELECTRICAL CHARACTERISTICS
ILOAD Recommended load current 3 V ≤ VIN
VOUT = 5 V
0 300 mA
3 V ≤ VIN
VOUT = 4 V
0 400 mA
VOUT Output voltage accuracy
(FB pin)
3 V ≤ VIN ≤ VOUT – 0.5 V
VOUT = 5 V
–30°C < TA < 85°C
–5% 5%
Output voltage (FB pin) 1 mA ≤ ILOAD ≤ 300 mA
VIN > VOUT + VSchottky(5)
VIN – VSchottky V
RDSON Switch ON resistance VDD1,2 = 3 V, ISW = 0.5 A 0.4 Ω
VDD1,2 = 3 V, ISW = 0.5 A
–30°C < TA < 85°C
0.8
fBoost PWM mode switching frequency RT = 82 kΩ
freq_sel[2:0] = 1XX
2 MHz
Frequency accuracy 2.7 V ≤ VDDA ≤ 2.9 V
RT = 82 kΩ ± 1%
–7% ±3% 7%
2.7 V ≤ VDDA ≤ 2.9 V
RT = 82 kΩ ± 1%
–30°C < TA < 85°C
–10% 10%
tPULSE Switch pulse minimum width no load 30 ns
tSTART-UP Start-up time Boost start-up from STANDBY(6) 10 ms
ISW_MAX SW pin current limit 700 800 900 mA
–30°C < TA < 85°C 550 950
RGB DRIVER ELECTRICAL CHARACTERISTICS (R1-4, G1-4, B1-4)
Ileakage R1-4, G1-4, B1-4 pin leakage current 5.5 V at measured pin 0.1 µA
5.5 V at measured pin
–30°C < TA < 85°C
1
IRGB Maximum recommended sink current Limited with external resistor RRGB
–30°C < TA < 85°C
40 mA
Accuracy at 15 mA RRGB = 8.2 kΩ ± 1% ±5%
Current mirror ratio See(6) 1 : 100
RGB1-4 current mismatch IRGB = 15 mA ±5%
fPWM RGB switching frequency Accuracy defined by internal oscillator, frequency value selectable fPWM
AUDIO SYNCHRONIZATION INPUT ELECTRICAL CHARACTERISTICS
ZIN Input Impedance of ASE1, ASE2  See(6) 10 15
AIN ASE1, ASE2 audio input level range (peak-to-peak) Min input level needs maximum gain; Max input level for minimum gain 0 1600 mV
ALED DRIVER ELECTRICAL CHARACTERISTICS
Ileakage Leakage current VALED = 5.5 V 0.03 µA
VALED = 5.5 V
–30°C < TA < 85°C
1
IALED ALED current tolerance IALED set to 13.2 mA 13.2 mA
IALED set to 13.2 mA
–30°C < TA < 85°C
11.9 14.5 mA
–10% 10%
LOGIC INTERFACE CHARACTERISTICS
VIL Input low level –30°C < TA < 85°C 0.2 × VDDIO V
VIH Input high level –30°C < TA < 85°C 0.8 × VDDIO V
II Logic input current –30°C < TA < 85°C –1 1 µA
fSCK/SCL Clock frequency I2C, –30°C < TA < 85°C 400 kHz
–30°C < TA < 85°C
SPI mode, VDDIO > 1.8 V
13 MHz
–30°C < TA < 85°C
SPI mode,
1.65V ≤ VDDIO < 1.8V
5 MHz
LOGIC INPUT NRST
VIL Input low level –30°C < TA < 85°C 0.5 V
VIH Input high level –30°C < TA < 85°C 1.2 V
II Logic input current –30°C < TA < 85°C –1 1 µA
tNRST Reset pulse width –30°C < TA < 85°C 10 µs
LOGIC OUTPUT SO
VOL Output low level ISO = 3 mA VDDIO > 1.8 V 0.3 V
ISO = 3 mA VDDIO > 1.8 V
–30°C < TA < 85°C
0.5
ISO = 2 mA, 1.65V ≤ VDDIO < 1.8 V 0.3
ISO = 2 mA, 1.65V ≤ VDDIO < 1.8 V
–30°C < TA < 85°C
0.5
VOH Output high level ISO = –3 mA, VDDIO > 1.8 V VDDIO – 0.3 V
ISO = –3 mA, VDDIO > 1.8 V
–30°C < TA < 85°C
VDDIO – 0.5
ISO = –2 mA, 1.65V ≤ VDDIO < 1.8 V VDDIO – 0.3
ISO = –2 mA, 1.65V ≤ VDDIO < 1.8 V
–30°C < TA < 85°C
VDDIO – 0.5
IL Output leakage current VSO = 2.8 V, –30°C < TA < 85°C 1 µA
LOGIC OUTPUT SDA
VOL Output low level ISDA = 3 mA 0.3 V
ISDA = 3 mA, –30°C < TA < 85°C 0.5
All voltages are with respect to the potential at the GND pins.
Minimum (MIN) and maximum (MAX) limits are ensured by design, test or statistical analysis. Typical (TYP) numbers are not ensured, but do represent the most likely norm.
Low-ESR surface-mount ceramic capacitors (MLCCs) used in setting electrical characteristics.
VDDA output is not recommended for external use.
When VIN rises above VOUT + VSchottky, VOUT starts to follow the VIN voltage rise so that VOUT = VIN – VSchottky.
Data ensured by design.

SPI Timing Requirements

VDD = VDDIO = 2.8 V(1)
MIN MAX UNIT
1 Cycle time 70 ns
2 Enable lead time 35 ns
3 Enable lag time 35 ns
4 Clock low time 35 ns
5 Clock high time 35 ns
6 Data setup time 20 ns
7 Data hold time 0 ns
8 Data access time 20 ns
9 Disable time 10 ns
10 Data valid 20 ns
11 Data hold time 0 ns
Data ensured by design.
LP55281 20201125.gif Figure 1. SPI Timing Diagram

I2C Timing Requirements

VDD1,2 = 3 V to 4.5 V, VDDIO = 1.65 V to VDD1,2 (1)
MIN MAX UNIT
1 Hold time (repeated) START condition 0.6 µs
2 Clock low time 1.3 µs
3 Clock high time 600 ns
4 Setup time for a repeated START Condition 600 ns
5 Data hold time 50 ns
6 Data setup time 100 ns
7 Rise time of SDA and SCL 20 + 0.1Cb 300 ns
8 Fall time of SDA and SCL 15 + 0.1Cb 300 ns
9 Set-up time for STOP condition 600 ns
10 Bus free time between a STOP and a START condition 1.3 µs
Cb Capacitive load for each bus line 10 200 pF
Data ensured by design.
LP55281 20201154.gif Figure 2. I2C Timing Diagram

Boost Converter Typical Characteristics

LP55281 20201198.gif
Figure 3. Boost Converter Efficiency
LP55281 20201110.gif
Figure 5. Battery Current vs Voltage
LP55281 20201115.gif
Figure 7. Output Voltage vs Load Current
LP55281 20201109.gif
Figure 4. Battery Current vs Voltage
LP55281 20201114.png
Figure 6. Boost Frequency vs RT Resistor

RGB Driver Typical Characteristics

LP55281 20201126.gif Figure 8. Output Current vs Pin Voltage
(Current Sink Mode)
LP55281 20201127.png
Figure 9. Output Current vs RRGB
(Current Sink Mode)