SLLS654C April   2005  – December 2014 MC33063A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Oscillator Characteristics
    6. 6.6 Output Switch Characteristics
    7. 6.7 Comparator Characteristics
    8. 6.8 Total Device Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Reference Voltage
      2. 7.3.2 Current Limit
      3. 7.3.3 Current Limit of Typical Operation Waveforms
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Step-Up Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Step-Down Converter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Voltage Inverter Converter
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
      4. 8.2.4 12 V Battery Based Automotive Supply
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
        3. 8.2.4.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The MC33063A-Q1 device requires minimal external components to build converters in the boost, buck, and inverting topologies.

8.2 Typical Applications

8.2.1 Step-Up Converter

stepup_lls654.gifFigure 10. Step-Up Converter
up_i_boost_lls654.gifFigure 11. External Switches

8.2.1.1 Design Requirements

Table 1. Step-Up Converter

TEST CONDITIONS RESULTS
Line regulation VIN = 8 V to 16 V, IO = 175 mA 30 mV ± 0.05%
Load regulation VIN = 12 V, IO = 75 mA to 175 mA 10 mV ± 0.017%
Output ripple VIN = 12 V, IO = 175 mA 400 mVPP
Efficiency VIN = 12 V, IO = 175 mA 87.7%
Output ripple with optional filter VIN = 12 V, IO = 175 mA 40 mVPP

8.2.1.2 Detailed Design Procedure

CALCULATION STEP UP STEP DOWN VOLTAGE INVERTING
ton/toff q_tonoff_up_lls654.gif q_tonoff_dwn_lls654.gif q_tonoff_inv_lls654.gif
(ton + toff) q_ton_off_up_lls654.gif q_ton_off_dn_lls654.gif q_ton_off_in_lls654.gif
toff q_toff_up_lls654.gif q_toff_dwn_lls654.gif q_toff_inv_lls654.gif
ton q_ton_up_lls654.gif q_ton_dwn_lls654.gif q_ton_inv_lls654.gif
CT q_ct_up_lls654.gif q_ct_dwn_lls654.gif q_ct_inv_lls654.gif
Ipk(switch) q_ipk_up_lls654.gif q_ipk_dwn_lls654.gif q_ipk_inv_lls654.gif
RSC q_rsc_up_lls654.gif q_rsc_dwn_lls654.gif q_rsc_inv_lls654.gif
L(min) q_lmin_up_lls654.gif q_lmin_dwn_lls654.gif q_lmin_inv_lls654.gif
CO q_co_up_lls654.gif q_co_dwn_lls654.gif q_co_inv_lls654.gif

8.2.1.3 Application Curve

boost_waves.gifFigure 12. Boost Switching Regulator Waveforms

8.2.2 Step-Down Converter

stepdown_lls654.gifFigure 13. Step-Down Converter
down_i_boost_lls654.gifFigure 14. External Current-Boost Connections for IC Peak Greater Than 1.5 A

8.2.2.1 Design Requirements

Table 2. Step-Down Converter

TEST CONDITIONS RESULTS
Line regulation VIN = 15 V to 25 V, IO = 500 mA 12 mV ± 0.12%
Load regulation VIN = 25 V, IO = 50 mA to 500 mA 3 mV ± 0.03%
Output ripple VIN = 25 V, IO = 500 mA 120 mVPP
Short-circuit current VIN = 25 V, RL = 0.1 Ω 1.1 A
Efficiency VIN = 25 V, IO = 500 mA 83.7%
Output ripple with optional filter VIN = 25 V, IO = 500 mA 40 mVPP

8.2.2.2 Detailed Design Procedure

See Detailed Design Procedure.

8.2.2.3 Application Curves

buck_waves.gifFigure 15. Buck Switching Regulator Waveforms

8.2.3 Voltage Inverter Converter

inverting_lls654.gifFigure 16. Voltage-Inverting Converter
down_i_boost_lls654.gifFigure 17. External Current-Boost Connections for Voltage Inverter Converter

8.2.3.1 Design Requirements

TEST CONDITIONS RESULTS
Line regulation VIN = 4.5 V to 6 V, IO = 100 mA 3 mV ± 0.12%
Load regulation VIN = 5 V, IO = 10 mA to 100 mA 0.022 V ± 0.09%
Output ripple VIN = 5 V, IO = 100 mA 500 mVPP
Short-circuit current VIN = 5 V, RL = 0.1 Ω 910 mA
Efficiency VIN = 5 V, IO = 100 mA 62.2%
Output ripple with optional filter VIN = 5 V, IO = 100 mA 70 mVPP

8.2.3.2 Detailed Design Procedure

See Detailed Design Procedure.

8.2.3.3 Application Curves

inverter_waves.gifFigure 18. Inverter Switching Regulator Waveforms

8.2.4 12 V Battery Based Automotive Supply

Application_example_4.pngFigure 19. 12 V Battery Based Automotive Supply Schematic

8.2.4.1 Design Requirements

Input Supply Voltage: 7 to 40 V

Output Supply Voltage: 5 V at 0.25 A

An additional supply rail of 3.3 at 0.2 A along with a power supply supervisor is required for this application.

8.2.4.2 Detailed Design Procedure

See Detailed Design Procedure.

8.2.4.3 Application Curve

Application_example_4_efficiency.pngFigure 20. Application Example 4 Efficiency