SLLSEO4A June   2015  – July 2015 ONET1130EP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Function
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 DC Electrical Characteristics
    6. 7.6 Transmitter AC Electrical Characteristics
    7. 7.7 Receiver AC Electrical Characteristics
    8. 7.8 Timing Requirements
    9. 7.9 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Transmitter
        1. 8.3.1.1 Equalizer
        2. 8.3.1.2 Modulator Driver
        3. 8.3.1.3 Modulation Current Generator
        4. 8.3.1.4 DC Offset Cancellation and Cross Point Control
        5. 8.3.1.5 Transmitter Loopback (Electrical Loopback)
        6. 8.3.1.6 Bias Current Generation and APC Loop
        7. 8.3.1.7 Laser Safety Features and Fault Recovery Procedure
      2. 8.3.2 Receiver
        1. 8.3.2.1 Equalizer
        2. 8.3.2.2 DC Offset Cancellation and Cross Point Control
        3. 8.3.2.3 Output Driver
        4. 8.3.2.4 Receiver Loopback (Optical Loopback)
        5. 8.3.2.5 Loss of Signal Detection
      3. 8.3.3 Analog Block
        1. 8.3.3.1 Analog Reference and Temperature Sensor
        2. 8.3.3.2 Power-On Reset
        3. 8.3.3.3 Analog to Digital Converter
        4. 8.3.3.4 2-Wire Interface and Control Logic
        5. 8.3.3.5 Bus Idle
        6. 8.3.3.6 Start Data Transfer
        7. 8.3.3.7 Stop Data Transfer
        8. 8.3.3.8 Data Transfer
      4. 8.3.4 Acknowledge
    4. 8.4 Device Functional Modes
      1. 8.4.1 Differential Transmitter Output
      2. 8.4.2 Single-Ended Transmitter Output
    5. 8.5 Programming
    6. 8.6 Register Mapping
      1. 8.6.1 R/W Control Registers
        1. 8.6.1.1 Core Level Register 0 (offset = 0100 0001 [reset = 41h]
        2. 8.6.1.2 Core Level Register 1 (offset = 0000 0000) [reset = 0h]
        3. 8.6.1.3 Core Level Register 2 (offset = 0000 0000 ) [reset = 0h]
        4. 8.6.1.4 Core Level Register 3 (offset = 0000 0000) [reset = 0h]
      2. 8.6.2 RX Registers
        1. 8.6.2.1 RX Register 4 (offset = 0000 0000) [reset = 0h]
        2. 8.6.2.2 RX Register 5 (offset = 0000 0000) [reset = 0h]
        3. 8.6.2.3 RX Register 6 (offset = 0000 0000) [reset = 0h]
        4. 8.6.2.4 RX Register 7 (offset = 0000 0000) [reset = 0h]
        5. 8.6.2.5 RX Register 8 (offset = 0000 0000) [reset = 0h]
        6. 8.6.2.6 RX Register 9 (offset = 0000 0000) [reset = 0h]
      3. 8.6.3 TX Registers
        1. 8.6.3.1 TX Register 10 (offset = 0000 0000) [reset = 0h]
        2. 8.6.3.2 TX Register 11 (offset = 0000 0000) [reset = 0h]
        3. 8.6.3.3 TX Register 12 (offset = 0000 0000) [reset = 0h]
        4. 8.6.3.4 TX Register 13 (offset = 0h) [reset = 0]
        5. 8.6.3.5 TX Register 14 (offset = 0000 0000) [reset = 0h]
        6. 8.6.3.6 TX Register 15 (offset = 0000 0000) [reset = 0h]
        7. 8.6.3.7 TX Register 16 (offset = 0000 0000) [reset = 0h]
        8. 8.6.3.8 TX Register 17 (offset = 0000 0000) [reset = 0h]
        9. 8.6.3.9 TX Register 18 (offset = 0000 0000) [reset = 0h]
      4. 8.6.4 Reserved Registers
        1. 8.6.4.1 Reserved Registers19-39
      5. 8.6.5 Read Only Registers
        1. 8.6.5.1 Core Level Register 40 (offset = 0000 0000) [reset = 0h]
        2. 8.6.5.2 Core Level Register 41 (offset = 0000 0000) [reset = 0h]
        3. 8.6.5.3 RX Registers 42 (offset = 0000 0000) [reset = 0h]
        4. 8.6.5.4 TX Register 43 (offset = 0000 0000) [reset = 0h]
      6. 8.6.6 Adjustment Registers
        1. 8.6.6.1 Adjustment Registers 44-55
        2. 8.6.6.2 Adjustment Registers 52-55
  9. Application Information and Implementations
    1. 9.1 Application Information
    2. 9.2 Typical Application, Transmitter Differential Mode
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
      4. 9.2.4 Typical Application, Transmitter Single-Ended Mode
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings (1)(2)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage at VCC_TX, VCC_RX, VDD –0.5 3 V
Voltage at 3.3-V tolerant pinsSDA, SCK, RX_LOS, RX_DIS, TX_FLT, TX_DIS –0.5 3.6 V
at all other pins MONB, TXIN+, TXIN–, PD, MONP, BIAS, TXOUT–, TXOUT+, AMP, RXIN+, RXIN–, COMP, RX_LF, RXOUT–, RXOUT+, –0.5 3 V
Maximum current at transmitter input pins TXIN+, TXIN– 10 mA
Maximum current at transmitter output pins TXOUT+, TXOUT– 125 mA
Maximum current at receiver input pins RXIN+, RXIN– 10 mA
Maximum current at receiver output pins RXOUT+, RXOUT– 30 mA
Maximum junction temperature, TJ 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
VCC Supply Voltage 2.37 2.5 2.63 V
VIH Digital input high voltage TX_DIS, RX_DIS, SCK, SDA, 3.3-V tolerant IOs 2 V
VIL Digital input low voltage 0.8 V
Photodiode current range Control bit TXPDRNG = 1x, step size = 3 µA 3080 µA
Control bit TXPDRNG = 01, step size = 1.5 µA 1540
Control bit TXPDRNG = 00, step size = 0.75 µA 770
Serial Data rate 11.7 Gbps
VAMP Amplitude control input voltage range 0 2 V
tR-IN Input rise time 20%–80% 30 45 ps
tF-IN Input fall time 20%–80% 30 45 ps
TC Temperature at thermal pad –40 100 °C

7.4 Thermal Information

THERMAL METRIC(1) RSM (VQFN) UNIT
32 PINS
RθJA Junction-to-ambient thermal resistance 37.2 °C/W
RθJCtop Junction-to-case (top) thermal resistance 30.1 °C/W
RθJB Junction-to-board thermal resistance 7.8 °C/W
ψJT Junction-to-top characterization parameter 0.4 °C/W
ψJB Junction-to-board characterization parameter 7.6 °C/W
RθJCbot Junction-to-case (bottom) thermal resistance 2.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 DC Electrical Characteristics

Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA, unless otherwise noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC Supply voltage 2.37 2.5 2.63 V
IVCC Supply current in single-ended TX mode TXMODE = 1, TX VOUT = 2 VPP single-ended, I(BIAS) = 0 mA; 600 mVPP differential RX output 161 185 mA
Power dissipation in single-ended TX mode 403 487 mW
Supply current in differential TX mode TXMODE = 0, TX VOUT = 1.8 VPP single-ended, I(BIAS) = 0 mA; 600 mVPP differential RX output 206 242 mA
Power dissipation in differential TX mode 515 636 mW
R(TXIN) Transmitter data input resistance Differential between TXIN+ / TXIN– 100 Ω
Transmitter data input termination mismatch 5%
R(RXIN) Receiver data input resistance Differential between RXIN+ / RXIN– 100 Ω
R(OUT) Transmitter output resistance Single-ended at TXOUT+ or TXOUT– 60 Ω
R(RXOUT) Receiver data output resistance Differential between RXOUT+ or RXOUT– 90 Ω
Receiver data output termination mismatch 5%
Digital input current TX_DIS, RX_DIS pull up to VCC –20 20 µA
VOH Digital output high voltage TX_FLT, RX_LOS, pull-up to VCC,
ISOURCE = 37.5 μA
2.1 V
VOL Digital output low voltage TX_FLT, RX_LOS, pull-up to VCC,
ISINK = 350 μA
0.4 V
I(BIAS-MIN) Minimum bias current See (1) 5 mA
I(BIAS-MAX) Maximum bias current Source. BIASPOL = 0, DAC set to maximum, open and closed loop 145 150 mA
Sink. BIASPOL = 1, DAC set to maximum, open and closed loop 95 100
I(BIAS-DIS) Bias current during disable 100 µA
Average power stability APC loop enabled ±0.5 dB
Bias pin compliance voltage Source. TXBIASPOL = 0 VCC-0.45 V
Sink. TXBIASPOL = 1 0.45
Temperature sensor accuracy With 1-point external mid-scale calibration ±3 °C
V(PD) Photodiode reverse bias voltage APC active, I(PD) = 1500 μA 1.3 2.3 V
Photodiode fault current level Percent of target I(PD)(2) 150%
Photodiode current monitor ratio I(MONP) / I(PD) with control bit PDRNG = 1X 10% 12.5% 15%
I(MONP) / I(PD) with control bit PDRNG = 01 20% 25% 30%
I(MONP) / I(PD) with control bit TXPDRNG = 00 40% 50% 60%
Monitor diode DMI accuracy With external mid-scale calibration ±10%
Bias current monitor ratio I(MONB) / I(BIAS) (nominal 1/100 = 1%), V(MONB) < 1.5V 0.9% 1% 1.1%
Bias current DMI accuracy I(BIAS) ≥ 20 mA –15% 15%
Power supply monitor accuracy With external mid-scale calibration –2% 2%
V(CC-RST) VCC reset threshold voltage VCC voltage level which triggers power-on reset 1.8 2.1 V
V(CC-RSTHYS) VCC reset threshold voltage hysteresis 100 mV
V(MONB-FLT) Fault voltage at MONB TXFLTEN = 1, TXDMONB = 0, Fault occurs if voltage at MONB exceeds this value 1.15 1.2 1.25 V
V(MONP-FLT) Fault voltage at MONP TXFLTEN = 1, TXMONPFLT = 1, TXDMONP = 0, Fault occurs if voltage at MONP exceeds this value 1.15 1.2 1.25 V
(1) The bias current can be set below the specified minimum according to the corresponding register setting; however, in closed loop operation settings below the specified value may trigger a fault.
(2) Assured by design over process, supply and temperature variation

7.6 Transmitter AC Electrical Characteristics

Over recommended operating conditions, open loop operation, VOUT = 2 VPP single-ended, I(BIAS) = 80 mA unless otherwise noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TX INPUT SPECIFICATIONS
Data rate CPRI, Ethernet, SONET, Fibre Channel 1 11.7 Gbps
Differential input return loss 0.05 GHz < f ≤ 0.1 GHz 20 dB
0.1 GHz < f ≤ 5.5 GHz 12 15
5.5 GHz < f < 12 GHz 8
Differential to common mode conversion 0.1 GHz < f < 12 GHz 10 15 dB
Common mode input return loss 0.1 GHz < f < 12 GHz 3 dB
Input AC common mode voltage tolerance 15 mV
VIN Differential input voltage swing 100 1000 mVPP
EQ(boost) EQ high freq boost Maximum setting; 7 GHz 6 9 dB
TX OUTPUT SPECIFICATIONS
Differential output return loss 0.01 GHz < f < 12 GHz 12 dB
VO(MIN) Minimum output amplitude AC Coupled Outputs, 50-Ω single-ended load 0.5 VPP
TX OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)
VO(MAX) Maximum output amplitude AC Coupled Outputs, 50-Ω load, single-ended 2 VPP
Output amplitude stability AC Coupled Outputs, 50-Ω load, single-ended 230 mVPP
High Cross Point Control Range 50-Ω load, single-ended 70% 75%
Low Cross Point Control Range 50-Ω load, single-ended 35% 40%
Cross Point Stability 50-Ω load, single-ended -5 5 pp
Output de-emphasis TXDEADJ[0..3] = 1111, TXPKSEL = 0 5 dB
TXDEADJ[0..3] = 1111, TXPKSEL = 1 6
TX OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)
VO(MAX) Maximum output amplitude AC Coupled Outputs, 100-Ω differential load 3.6 VPP
Output amplitude stability AC Coupled Outputs, 100-Ω differential load 230 mVPP
High Cross Point Control Range 100-Ω differential load 65% 75%
Low Cross Point Control Range 100-Ω differential load 35% 40%
Cross Point Stability 100-Ω differential load –5 5 pp
Output de-emphasis TXDEADJ[0..3] = 1111, TXPKSEL = 0 5 dB
TXDEADJ[0..3] = 1111, TXPKSEL = 1 6

7.7 Receiver AC Electrical Characteristics

Over recommended operating conditions, outputs connected to a 50-Ω load, VOD = 600 mVpp differential unless otherwise noted. Typical operating condition is at VCC = 2.5 V and TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RX INPUT SPECIFICATIONS
Data rate CPRI, Ethernet, SONET, Fibre Channel 1 11.7 Gbps
Differential input return loss 0.01 GHz < f ≤ 5 GHz 15 dB
5 GHz < f < 12 GHz 8
Differential to common mode conversion 0.1 GHz < f < 12 GHz 15 dB
VI(RX,MIN) Data input sensitivity TXOUT_DIS = 1, PRBS31 pattern at 11.7Gbps,
BER < 10-12
6 9 mVPP
VI(RX,MAX) Data input overload 800 mVPP
J(T_RX) Sinusoidal jitter tolerance 9.95 Gbps, BER = 10-12, f = 400kHz 1.5 UIPP
9.95 Gbps, BER = 10-12, f = 4MHz 0.4
9.95 Gbps, BER = 10-12, f = 80MHz 0.4
RX OUTPUT SPECIFICATIONS
Differential output return loss 0.05 GHz < f ≤ 0.1 GHz 20 dB
0.1 GHz < f < 5.5 GHz 8 15
5.5 GHz < f < 12 GHz 8
Common mode input return loss 0.1 GHz < f < 12 GHz 3 dB
CMOV(RX) Output AC common mode voltage PRBS31 pattern, RXAMP[0..3] = 0001 7 mVrms
f3dB-L Low frequency –3dB bandwidth 20 50 kHz
D(J_RX) Deterministic output jitter 0.1 UIPP
T(J_RX) Total output jitter 0.2 UIPP
VOD Differential data output voltage VIN > 25 mVPP, RX_DIS = 0, RXAMP[0..3] = 0000 300 mVPP
VIN > 25 mVPP, RX_DIS = 0, RXAMP[0..3] = 1111 900 mVPP
RX_DIS = 1 5 mVrms
Output De-emphasis RXDADJ[0..1] = 11 1 dB
RX LOS SPECIFICATIONS
VTH LOW LOS assert threshold range min PRBS7 pattern at 11.3Gbps, RXLOSRNG = 1 10 mVPP
LOW LOS assert threshold range max PRBS7 pattern at 11.3Gbps, RXLOSRNG = 1 50
VTH HIGH LOS assert threshold range min PRBS7 pattern at 11.3Gbps, RXLOSRNG = 0 40 mVPP
HIGH LOS assert threshold range max PRBS7 pattern at 11.3Gbps, RXLOSRNG = 0 130
LOS hysteresis (electrical) 2 4 6 dB
LOS threshold variation Versus temperature 1.5 dB
Versus supply voltage 1
Versus data rate 1.5

7.8 Timing Requirements

Over recommended operating conditions, open loop operation, TXOUT+ = 2 VPP singled-ended, I(BIAS) = 80 mA, VOD = 600 mVPP differential (unless otherwise noted). Typical operating condition is at VCC = 2.5 V and TA = 25°C
MIN TYP MAX UNIT
t(APC) APC time constant CAPC 0.01 µF, IPD = 500 µA, PD coupling ratio CR = 150,
PDRNG = 01
50 µs
t(INIT1) Power-on to initialize Power-on to registers ready to be loaded 0.2 1 ms
t(INIT2) Initialize to transmit Register load STOP command to part ready to transmit valid data 2 ms
t(OFF) Transmitter disable time Rising edge of TX_DIS to I(BIAS) ≤ 0.1 × I(BIAS-NOMINAL) 1 5 µs
t(ON) Disable negate time Falling edge of TX_DIS to I(BIAS) ≥ 0.9 × I(BIAS-NOMINAL) 1 ms
t(RESET) TX_DIS pulse width Time TX_DIS must held high to reset part 100 ns
t(FAULT) Fault assert time Time from fault condition to FLT high 50 µs
TX OUTPUT SPECIFICATIONS in SINGLE-ENDED MODE of OPERATION (TXMODE = 1)
tR(OUTTX) Output rise time 20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended 30 42 ps
tF(OUTTX) Output fall time 20% - 80%, AC Coupled Outputs, 50-Ω load, single-ended 30 42 ps
ISI(TX) Intersymbol interference TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,
600-mVpp, 1200-mVpp differential input voltage
4 12 ps
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,
600-mVpp, 1200-mVpp differential input voltage, maximum equalization with 18-inch transmission line at the input.
7
R(J_TX) Serial data output random jitter 0.4 1 psRMS
Output de-emphasis width TXPKSEL = 0 28 ps
TXPKSEL = 1 35
TX OUTPUT SPECIFICATIONS in DIFFERENTIAL MODE of OPERATION (TXMODE = 0)
tR(OUTTX) Output rise time 20%–80%, AC Coupled Outputs, 100-Ω differential load 30 42 ps
tF(OUTTX) Output fall time 20%–80%, AC Coupled Outputs, 100-Ω differential load 30 42 ps
ISI(TX) Intersymbol interference TXEQ_DIS = 1, 11.3 Gbps, PRBS9 pattern, 150-mVpp,
600-mVpp, 1200-mVpp differential input voltage
4 10 ps
TXEQ_DIS = 0, 11.3 Gbps, PRBS9 pattern, 150-mVpp,
600-mVpp, 1200-mVpp differential input voltage, maximum equalization with 18-inch transmission line at the input.
7
R(J_TX) Serial data output random jitter 0.4 1 psRMS
Output Peaking Width TXPKSEL = 0 28 ps
TXPKSEL = 1 35
RX OUTPUT SPECIFICATIONS
tR(OUTRX) Output rise time 20%–80%, 100-Ω differential load, adjustable 30 40 ps
tF(OUTRX) Output fall time 20%–80%, 100-Ω differential load, adjustable 30 40 ps
Serial data output deterministic jitter PRBS9 pattern 11.3 Gbps, VIN = 15 mVpp to 900 mVpp 3 10 ps
RX LOS SPECIFICATIONS
t(LOS_AST) LOS assert time 2.5 10 50 μs
t(LOS, DEA) LOS deassert time 2.5 10 50 μs
ONET1130EP I2C_Timing_Diag_SLLSEJ3.gifFigure 1. 2-Wire Interface Diagram

Table 1. Timing Diagram Definitions

Symbol Description Min Max Unit
fSCK SCK clock frequency 400 kHz
tBUF Bus free time between START and STOP conditions 1.3 µs
tHDSTA Hold time after repeated START condition. After this period, the first clock pulse is generated 0.6 µs
tLOW Low period of the SCK clock 1.3 µs
tHIGH High period of the SCK clock 0.6 µs
tSUSTA Setup time for a repeated START condition 0.6 µs
tHDDAT Data HOLD time 0 µs
tSUDAT Data setup time 100 ns
tR Rise time of both SDA and SCK signals 300 ns
tF Fall time of both SDA and SCK signals 300 ns
tSUSTO Setup time for STOP condition 0.6 µs

7.9 Typical Characteristics

Typical operating condition is at VCC = 2.5 V, TA = 25°C, TXOUT+ = 2 VPP Single-ended, RXOUT = 600 mVPP differential, TXIN = 600 mVPP differential (unless otherwise noted).
ONET1130EP D010_SLLSEO4.gif
TXMODE = 0
Figure 2. TX Deterministic Jitter vs Modulation Current
ONET1130EP D012_SLLSEO4.gif
TXMODE = 0
Figure 4. TX Deterministic Jitter vs Temperature
ONET1130EP D014_SLLSEO4.gif
TXMODE = 1
Figure 6. TX Random Jitter vs Modulation Current
ONET1130EP D016_SLLSEO4.gif
TXMODE = 1
Figure 8. TX Rise-Time and Fall-Time vs Modulation Current
ONET1130EP D018_SLLSEO4.gif
Figure 10. Source Bias Current in Open Loop Mode vs Bias Register Setting
ONET1130EP D020_SLLSEO4.gif
Figure 12. Bias-Monitor Current I(MONB) vs Bias Current
ONET1130EP D022_SLLSEO4.gif
TXMODE = 0
Figure 14. Output Voltage vs Modulation Current
ONET1130EP D024_SLLSEO4.gif
TXMODE = 0 Bias Current = 0
Figure 16. Supply Current vs Temperature
ONET1130EP D026_SLLSEO4.gif
Figure 18. Bias Current Monitor Fault vs TXBMF Register Setting
ONET1130EP Eye_Diagram_ TXMODE0_SLLSEO4.png
TXMODE = 0 15 ps/Div
Figure 20. TX Eye-Diagram at 11.3 Gbps
ONET1130EP D001_SLLSEJ3.gif
Figure 22. RX Frequency Response
ONET1130EP D003_SLLSEJ3.gif
Figure 24. RX Differential Input Return Gain vs Frequency
ONET1130EP D005_SLLSEJ3.gif
11.3 Gbps TX Disabled
Figure 26. RX Bit-Error Ratio vs Input Amplitude
ONET1130EP D007_SLLSEJ3.gif
Figure 28. RX Random Jitter vs Input Amplitude
ONET1130EP D009_SLLSEJ3.gif
RX LOSRNG = 1
Figure 30. LOS Assert / Deassert Voltage vs Register 7 Setting
ONET1130EP D029_SLLSEO4.gif
RX LOSRNG = 1
Figure 32. LOS Hysteresis vs Register Setting
ONET1130EP D011_SLLSEO4.gif
TXMODE = 1
Figure 3. TX Deterministic Jitter vs Modulation Current
ONET1130EP D013_SLLSEO4.gif
TXMODE = 1
Figure 5. TX Deterministic Jitter vs Temperature
ONET1130EP D015_SLLSEO4.gif
TXMODE = 1
Figure 7. TX Random Jitter vs Temperature
ONET1130EP D017_SLLSEO4.gif
TXMODE = 1
Figure 9. TX Rise-Time and Fall-Time vs Temperature
ONET1130EP D019_SLLSEO4.gif
Figure 11. Sink Bias Current in Open Loop Mode vs Bias Register Setting
ONET1130EP D021_SLLSEO4.gif
TXPDRNG[0..1] = 00
Figure 13. Photodiode-Monitor Current I(MONP) vs PD Current
ONET1130EP D023_SLLSEO4.gif
TXMODE = 1
Figure 15. Output Voltage vs Modulation Current
ONET1130EP D025_SLLSEO4.gif
TXMODE = 1 Bias Current = 0
Figure 17. Supply Current vs Temperature
ONET1130EP D027_SLLSEO4.gif
Figure 19. Photodiode Current Monitor Fault vs TXPMF Register Setting
ONET1130EP Eye_Diagram_ TXMODE1_SLLSEO4.png
TXMODE = 1 15 ps/Div
Figure 21. TX Eye-Diagram at 11.3 Gbps
ONET1130EP D002_SLLSEJ3.gif
Figure 23. RX Transfer Function
ONET1130EP D004_SLLSEJ3.gif
Figure 25. RX Differential Output Return Gain vs Frequency
ONET1130EP D006_SLLSEJ3.gif
Figure 27. RX Deterministic Jitter vs Input Amplitude
ONET1130EP D008_SLLSEJ3.gif
RX LOSRNG = 0
Figure 29. LOS Assert / Deassert Voltage vs Register 7 Setting
ONET1130EP D028_SLLSEO4.gif
RX LOSRNG = 0
Figure 31. LOS Hysteresis vs Register 7 Setting
ONET1130EP Typ_Ops_C7_SLLSEJ3.png
VI = 20 mVPP
Figure 33. RX Output Eye-Diagram at 11.3 Gbps