JAJSKT0 December   2020 PCM6020-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Timing Requirements: I2C Interface
    7. 7.7  Switching Characteristics: I2C Interface
    8. 7.8  Timing Requirements: SPI Interface
    9. 7.9  Switching Characteristics: SPI Interface
    10. 7.10 Timing Requirements: TDM, I2S or LJ Interface
    11. 7.11 Switching Characteristics: TDM, I2S or LJ Interface
    12. 7.12 Timing Diagrams
    13. 7.13 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Serial Interfaces
        1. 8.3.1.1 Control Serial Interfaces
        2. 8.3.1.2 Audio Serial Interfaces
          1. 8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 8.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 8.3.1.2.3 Left-Justified (LJ) Interface
        3. 8.3.1.3 Using Multiple Devices With Shared Buses
      2. 8.3.2 Phase-Locked Loop (PLL) and Clock Generation
      3. 8.3.3 Input Channel Configuration
      4. 8.3.4 Reference Voltage
      5. 8.3.5 Microphone Bias
      6. 8.3.6 Input DC Fault Diagnostics
        1. 8.3.6.1 Fault Conditions
          1. 8.3.6.1.1 Input Pin Short to Ground
          2. 8.3.6.1.2 Input Pin Short to MICBIAS
          3. 8.3.6.1.3 Open Inputs
          4. 8.3.6.1.4 Short Between INxP and INxM
          5. 8.3.6.1.5 Input Pin Overvoltage
          6. 8.3.6.1.6 Input Pin Short to VBAT_IN
        2. 8.3.6.2 Fault Reporting
          1. 8.3.6.2.1 Overcurrent and Overtemperature Protection
      7. 8.3.7 Signal-Chain Processing
        1. 8.3.7.1 Programmable Channel Gain and Digital Volume Control
        2. 8.3.7.2 Programmable Channel Gain Calibration
        3. 8.3.7.3 Programmable Channel Phase Calibration
        4. 8.3.7.4 Programmable Digital High-Pass Filter
        5. 8.3.7.5 Programmable Digital Biquad Filters
        6. 8.3.7.6 Programmable Channel Summer and Digital Mixer
        7. 8.3.7.7 Configurable Digital Decimation Filters
          1. 8.3.7.7.1 Linear Phase Filters
            1. 8.3.7.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz
            2. 8.3.7.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz
            3. 8.3.7.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz
            4. 8.3.7.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz
            5. 8.3.7.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz
            6. 8.3.7.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz
            7. 8.3.7.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz
            8. 8.3.7.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz
            9. 8.3.7.7.1.9 Sampling Rate: 768 kHz or 705.6 kHz
          2. 8.3.7.7.2 Low-Latency Filters
            1. 8.3.7.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz
            2. 8.3.7.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz
            3. 8.3.7.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz
            4. 8.3.7.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz
            5. 8.3.7.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz
            6. 8.3.7.7.2.6 Sampling Rate: 192 kHz or 176.4 kHz
          3. 8.3.7.7.3 Ultra-Low-Latency Filters
            1. 8.3.7.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz
            2. 8.3.7.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz
            3. 8.3.7.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz
            4. 8.3.7.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz
            5. 8.3.7.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz
            6. 8.3.7.7.3.6 Sampling Rate: 192 kHz or 176.4 kHz
            7. 8.3.7.7.3.7 Sampling Rate: 384 kHz or 352.8 kHz
      8. 8.3.8 Automatic Gain Controller (AGC)
      9. 8.3.9 Interrupts, Status, and Digital I/O Pin Multiplexing
    4. 8.4 Device Functional Modes
      1. 8.4.1 Hardware Shutdown
      2. 8.4.2 Sleep Mode or Software Shutdown
      3. 8.4.3 Active Mode
      4. 8.4.4 Software Reset
    5. 8.5 Programming
      1. 8.5.1 Control Serial Interfaces
        1. 8.5.1.1 I2C Control Interface
          1. 8.5.1.1.1 General I2C Operation
          2. 8.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers
            1. 8.5.1.1.2.1 I2C Single-Byte Write
            2. 8.5.1.1.2.2 I2C Multiple-Byte Write
            3. 8.5.1.1.2.3 I2C Single-Byte Read
            4. 8.5.1.1.2.4 I2C Multiple-Byte Read
        2. 8.5.1.2 SPI Control Interface
    6. 8.6 Register Maps
      1. 8.6.1 Device Configuration Registers
        1. 8.6.1.1 Registers Access Type
        2. 8.6.1.2 Page 0 Registers
        3. 8.6.1.3 Page 1 Registers
      2. 8.6.2 Programmable Coefficient Registers
        1. 8.6.2.1 Programmable Coefficient Registers: Page 2
        2. 8.6.2.2 Programmable Coefficient Registers: Page 3
        3. 8.6.2.3 Programmable Coefficient Registers: Page 4
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 2-Channel Analog Microphone Recording Using the PCM6020-Q1
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Example Device Register Configuration Script for EVM Setup
        3. 9.2.1.3 Application Curves
    3. 9.3 What To Do and What Not To Do
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
      1.      Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
General I2C Operation

The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between the integrated circuits in a system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a START condition on the bus and ends with the master device driving a STOP condition on the bus. The bus uses transitions on the data pin (SDA) when the clock is at logic high to indicate START and STOP conditions. A high-to-low transition on SDA indicates a START, and a low-to-high transition indicates a STOP condition. Normal data-bit transitions must occur within the low time of the clock period.

The master device drives a START condition followed by the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledgment condition. The slave device holds SDA low during the acknowledge clock period to indicate acknowledgment. When this step occurs, the master device transmits the next byte of the sequence. Each slave device is addressed by a unique 7-bit slave address plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection.

There is no limit on the number of bytes that can be transmitted between START and STOP conditions. When the last word transfers, the master device generates a STOP condition to release the bus. Figure 8-66 shows a generic data transfer sequence.

GUID-CCC06BF4-0A73-4586-B156-68ECFFF34FBA-low.gifFigure 8-66 Typical I2C Sequence

In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus. The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.