SLAS834C November   2012  – December 2014 RF430FRL152H , RF430FRL153H , RF430FRL154H

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Signal Descriptions
    3. 4.3 Pin Multiplexing
    4. 4.4 Connections for Unused Pins
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Recommended Operating Conditions, Resonant Circuit
    5. 5.5  Active Mode Supply Current Into VDDB Excluding External Current
    6. 5.6  Low-Power Mode Supply Current (Into VDDB) Excluding External Current
    7. 5.7  Digital I/Os (P1, RST/NMI)
    8. 5.8  High-Frequency Oscillator (4 MHz), HFOSC
    9. 5.9  Low-Frequency Oscillator (256 kHz), LFOSC
    10. 5.10 Wake-Up From Low-Power Modes
    11. 5.11 Timer_A
    12. 5.12 eUSCI (SPI Master Mode) Recommended Operating Conditions
    13. 5.13 eUSCI (SPI Master Mode)
    14. 5.14 eUSCI (SPI Slave Mode)
    15. 5.15 eUSCI (I2C Mode)
    16. 5.16 FRAM
    17. 5.17 JTAG
    18. 5.18 RFPMM, Power Supply Switch
    19. 5.19 RFPMM, Bandgap Reference
    20. 5.20 RFPMM, Voltage Doubler
    21. 5.21 RFPMM, Voltage Supervision
    22. 5.22 SD14, Performance
    23. 5.23 SVSS Generator
    24. 5.24 Thermistor Bias Generator
    25. 5.25 Temperature Sensor
    26. 5.26 RF13M, Power Supply and Recommended Operating Conditions
    27. 5.27 RF13M, ISO/IEC 15693 ASK Demodulator
    28. 5.28 RF13M, ISO/IEC 15693 Compliant Load Modulator
  6. 6Detailed Description
    1. 6.1 CPU
    2. 6.2 Instruction Set
    3. 6.3 Operating Modes
    4. 6.4 Interrupt Vector Addresses
    5. 6.5 Memory
      1. 6.5.1 FRAM
      2. 6.5.2 SRAM
      3. 6.5.3 Application ROM
    6. 6.6 Peripherals
      1. 6.6.1  Digital I/O, (P1.x)
      2. 6.6.2  Versatile I/O Port P1
      3. 6.6.3  Oscillator and System Clock
      4. 6.6.4  Compact System Module (C-SYS_A)
      5. 6.6.5  Watchdog Timer (WDT_A)
      6. 6.6.6  Reset, NMI, SVMOUT System
      7. 6.6.7  Timer_A (Timer0_A3)
      8. 6.6.8  Enhanced Universal Serial Communication Interface (eUSCI_B0)
      9. 6.6.9  ISO/IEC 15693 Analog Front End (RF13M)
      10. 6.6.10 ISO/IEC 15693 Decoder/Encoder (RF13M)
      11. 6.6.11 CRC16 Module (CRC16)
      12. 6.6.12 14-Bit Sigma-Delta ADC (SD14)
      13. 6.6.13 Programmable Gain Amplifier (SD14)
      14. 6.6.14 Peripheral Register Map
    7. 6.7 Port Schematics
      1. 6.7.1 Port P1.0 Input/Output
      2. 6.7.2 Port P1.1 Input/Output
      3. 6.7.3 Port P1.2 Input/Output
      4. 6.7.4 Port P1.3 Input/Output
      5. 6.7.5 Port P1.4 Input/Output
      6. 6.7.6 Port P1.5 Input/Output
      7. 6.7.7 Port P1.6 Input/Output
      8. 6.7.8 Port P1.7 Input/Output
    8. 6.8 Device Descriptors (TLV)
  7. 7Applications, Implementation, and Layout
  8. 8Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
      2. 8.1.2 Device and Development Tool Nomenclature
    2. 8.2 Documentation Support
    3. 8.3 Related Links
    4. 8.4 Community Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  9. 9Mechanical Packaging and Orderable Information
    1. 9.1 Packaging Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

5 Specifications

5.1 Absolute Maximum Ratings(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
MIN MAX UNIT
Voltage applied at VDDB referenced to VSS (VAMR) -0.3 1.65 V
Voltage applied at VANT referenced to VSS (VAMR) -0.3 3.6 V
Voltage applied to any pin (references to VSS) -0.3 VDDB + 0.3 V
Diode current at any device pin(2) ±2 mA
Current derating factor when I/O ports are switched in parallel electrically and logically(3) 0.9
Storage temperature range, Tstg(4)(5)(6) -40 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are referenced to VSS.
(3) The diode current increases to ±4.5 mA when two pins are connected, it increases to ±6.75 mA when three pins are connected, and so on.
(4) Soldering during board manufacturing must follow the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. If hand soldering is required for application prototyping, peak temperature must not exceed 250°C for a total of 5 minutes for any single device.
(5) Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg.
(6) Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification.

5.2 ESD Ratings

VALUE UNIT
VESD Electrostatic discharge (ESD) performance Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)(2) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Low leakage pin: ADC0 has reduced ESD tolerance of ±500 V HBM.

5.3 Recommended Operating Conditions

Typical data are based on VDDB = 1.5 V, TA = 25°C (unless otherwise noted)
MIN NOM MAX UNIT
VDDB Supply voltage during program execution 1.45 1.65 V
VSS Supply voltage (GND reference) 0 V
TA Operating free-air temperature 0 70 °C
CVDDB Capacitor on VDDB(1) 100 nF
CVDDSW Capacitor on VDDSW(1) 2.2 µF
CFLY Charge pump capacitor between CP1 and CP2.
Recommended ratio between CFLY and CVDD2X is ≥ 1:10. (1)
10 nF
CVDD2X Capacitor on VDD2x.
Recommended ratio between CFLY and CVDD2X is ≥ 1:10.(1)
100 nF
CVDDD Capacitor on VDDD(1) 1 µF
CSVSS Capacitor between SVSS and VSS(1) 1 µF
fSYSTEM System frequency(2)(3) 2 MHz
fCLKIN External clock input frequency 32 kHz
(1) Low equivalent series resistance (ESR) capacitor
(2) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.
(3) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.

5.4 Recommended Operating Conditions, Resonant Circuit

MIN NOM MAX UNIT
fc Carrier frequency 13.56 MHz
VANT_peak Antenna input voltage 3.6 V
Z Impedance of LC circuit 6.5 15.5
LRES Coil inductance 2.66 µH
CRES Resonance capacitance 51.8 – CIN(1) pF
QT Tank quality factor 30
(1) See the RF13M parameter section.

5.5 Active Mode Supply Current Into VDDB Excluding External Current

over recommended operating free-air temperature (unless otherwise noted)(1)
PARAMETER EXECUTION
MEMORY
VDDB Frequency (fMCLK = fSMCLK) UNIT
1 MHz 2 MHz
TYP MAX TYP MAX
IAM, FRAM(2) FRAM 1.5 V 330 420 480 580 µA
IAM, RAM(2) RAM 1.5 V 220 300 250 320 µA
IAM, ROM(2) ROM 1.5 V 220 300 230 300 µA
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) fACLK = 256 kHz, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0

5.6 Low-Power Mode Supply Current (Into VDDB) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER VDDB 0ºC 20ºC 45ºC 70ºC UNIT
TYP MAX TYP MAX TYP MAX TYP MAX
ILPM0(2) fMCLK = off, fSMCLK = 1 MHz, fACLK = 32 kHz,
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0
1.5 V 170 230 190 210 260 340 µA
ILPM3(3) fMCLK = fSMCLK = off, fACLK = 16 kHz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0
1.5 V 12 20 13 16 25 65 µA
ILPM4(4) fMCLK = fSMCLK = fACLK = 0 Hz
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1
1.5 V 11 16 12 15 24 60 µA
(1) Including current for WDT clocked by ACLK.
(2) CSS: SELM=SELS=HF_CLK, SELA=LF_CLK, DIVM=/2 (2MHz), DIVS=/4 (1MHz), DIVA=/8 (32kHz)
SD14: reset values
RFPMM: battery switch on (EN_BATSWITCH=1)
(3) CSS: SELM=HF_CLK, SELS=SELA=LF_CLK, DIVM=/2 (2MHz), DIVS=/32 (8kHz), DIVA=/16 (16kHz)
SD14: reset values
RFPMM: EN_BATSWITCH=1(battery switch enabled)
(4) CSS: SELM=HF_CLK, SELS=SELA=LF_CLK, DIVM=/2 (2MHz), DIVS=/32 (8kHz), DIVA=/16 (16kHz)
SD14: reset values
RFPMM: EN_BATSWITCH=1(battery switch enabled)

5.7 Digital I/Os (P1, RST/NMI)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage VDDB = 1.5 V, IOH = -400 µA(1) for port P1 VDDB – 0.15 V
VOL Low-level output voltage VDDB = 1.5 V, IOL = 400 µA(2) for port P1 0.15 V
VIH High-level input voltage VDDB = 1.5 V 0.7 × VDDB V
VIL Low-level input voltage VDDB = 1.5 V 0.3 × VDDB V
IOH High-level output current VDDB = 1.45 V to 1.65 V for port P1 -400 µA
IOL Low-level output current VDDB = 1.45 V to 1.65 V for port P1 400 µA
ILKG High-impedance leakage current VDDB = 1.45 V to 1.65 V -100 100 nA
tINT External interrupt timing(3) P1.x, VDDB = 1.45 V to 1.65 V 200 ns
RPULL Pullup or pulldown resistor VDDB=1.5 V, For pullup: VIN = VSS,
For pulldown: VIN = VDDB for port P1
30 35 40
RRST Pullup on RST/NMI 30 35 40
REXT External pullup resistor on RST terminal (optional) 47
CEXT External capacitor on RST terminal 10 nF
(1) The maximum total current IOH, for all outputs combined should not exceed 500 µA to hold the maximum voltage drop specified, limited by low leakage switches.
(2) The maximum total current IOL, for all outputs combined should not exceed 500 µA to hold the maximum voltage drop specified.
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse duration tINT is met.

5.8 High-Frequency Oscillator (4 MHz), HFOSC

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fHFOSC ±20% 3.04 3.8 4.56 MHz
Duty cycle 45% 50% 55%
tSTART 1 µs

5.9 Low-Frequency Oscillator (256 kHz), LFOSC

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fLFO trimmed ±5% 243 256 269 kHz
Duty cycle 45% 50% 55%
tSTART 11 µs

5.10 Wake-Up From Low-Power Modes

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VDDB MIN TYP MAX UNIT
tWAKE-UP LPM0 Wake-up time from LPM0 to active mode(1) 1.5 V 3.2 6 µs
tWAKE-UP LPM34 Wake-up time from LPM3 or LPM4 to active mode(1) 1.5 V 160 260 µs
tWAKE-UP RESET Wake-up time from RST to active mode.(2) VDDB stable 1.5 V 210 310 µs
(1) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is fetched. This time includes the activation of the FRAM during wake-up. fMCLK = 2 MHz.
(2) The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is fetched. This time includes the activation of the FRAM during wake-up. fMCLK = 2 MHz.

5.11 Timer_A

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VDDB MIN TYP MAX UNIT
fTA Timer_A input clock frequency Internal: SMCLK, ACLK
External: TACLK
Duty cycle = 50% ± 10%
1.5 V 4 MHz
tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 1.5 V 20 ns

5.12 eUSCI (SPI Master Mode) Recommended Operating Conditions

PARAMETER CONDITIONS VDDB MIN TYP MAX UNIT
feUSCI eUSCI input clock frequency Internal: SMCLK, ACLK
Duty cycle = 50% ± 10%
1.5 V fSYSTEM MHz

5.13 eUSCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VDDB MIN TYP MAX UNIT
tSTE,LEAD STE lead time, STE active to clock UCSTEM = 0,
UCMODEx = 01 or 10
1.5 V 1 UCxCLK
cycles
UCSTEM = 1,
UCMODEx = 01 or 10
1.5 V 1
tSTE,LAG STE lag time, Last clock to STE inactive UCSTEM = 0,
UCMODEx = 01 or 10
1.5 V 1 UCxCLK
cycles
UCSTEM = 1,
UCMODEx = 01 or 10
1.5 V 1
tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 0,
UCMODEx = 01 or 10
1.5 V 55 ns
UCSTEM = 1,
UCMODEx = 01 or 10
1.5 V 35
tSTE,DIS STE disable time, STE inactive to SIMO high impedance UCSTEM = 0,
UCMODEx = 01 or 10
1.5 V 40 ns
UCSTEM = 1,
UCMODEx = 01 or 10
1.5 V 30
tSU,MI SOMI input data setup time 1.5 V 35 ns
tHD,MI SOMI input data hold time 1.5 V 0 ns
tVALID,MO SIMO output data valid time(2) UCLK edge to SIMO valid,
CL = 20 pF
1.5 V 30 ns
tHD,MO SIMO output data hold time(3) CL = 20 pF 1.5 V 0 ns
(1) fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-1 and Figure 5-2.
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5-1 and Figure 5-2.
eusci_spi_master_ckph0_slas833.gifFigure 5-1 SPI Master Mode, CKPH = 0
eusci_spi_master_ckph1_slas833.gifFigure 5-2 SPI Master Mode, CKPH = 1

5.14 eUSCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VDDB MIN TYP MAX UNIT
tSTE,LEAD STE lead time, STE active to clock 1.5 V 7 ns
tSTE,LAG STE lag time, Last clock to STE inactive 1.5 V 0 ns
tSTE,ACC STE access time, STE active to SOMI data out 1.5 V 65 ns
tSTE,DIS STE disable time, STE inactive to SOMI high impedance 1.5 V 40 ns
tSU,SI SIMO input data setup time 1.5 V 2 ns
tHD,SI SIMO input data hold time 1.5 V 5 ns
tVALID,SO SOMI output data valid time(2) UCLK edge to SOMI valid,
CL = 20 pF
1.5 V 30 ns
tHD,SO SOMI output data hold time(3) CL = 20 pF 1.5 V 4 ns
(1) fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-3 and Figure 5-4.
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-3 and Figure 5-4.
eusci_spi_slave_ckph0_slas833.gifFigure 5-3 SPI Slave Mode, CKPH = 0
eusci_spi_slave_ckph1_slas833.gifFigure 5-4 SPI Slave Mode, CKPH = 1

5.15 eUSCI (I2C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-5)
PARAMETER TEST CONDITIONS VDDB MIN TYP MAX UNIT
feUSCI eUSCI input clock frequency Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
fSYSTEM MHz
fSCL SCL clock frequency 1.5 V 0 400 kHz
tHD,STA Hold time (repeated) START fSCL = 100 kHz 1.5 V 4.0 µs
fSCL > 100 kHz 0.6
tSU,STA Setup time for a repeated START fSCL = 100 kHz 1.5 V 4.7 µs
fSCL > 100 kHz 0.6
tHD,DAT Data hold time 1.5 V 0 ns
tSU,DAT Data setup time 1.5 V 250 ns
tSU,STO Setup time for STOP fSCL = 100 kHz 1.5 V 4.0 µs
fSCL > 100 kHz 0.6
tSP Pulse duration of spikes suppressed by input filter UCGLITx = 0 1.5 V 50 600 ns
UCGLITx = 1 25 300 ns
UCGLITx = 2 12.5 150 ns
UCGLITx = 3 6.25 75 ns
tTIMEOUT Clock low time-out UCCLTOx = 1 1.5 V 27 ms
UCCLTOx = 2 30 ms
UCCLTOx = 3 33 ms
eusci_i2c_slas833.gifFigure 5-5 I2C Mode Timing

5.16 FRAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tWRITE Word or byte write time 125 ns
Read/write endurance 1015 cycles
tRetention Data retention duration TJ = 25°C 10 years

5.17 JTAG

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER VDDB MIN TYP MAX UNIT
fTCK TCK input frequency, 4-wire JTAG(1) 1.5 V 0 4 MHz
(1) fTCK may be restricted to meet the timing requirements of the module selected.

5.18 RFPMM, Power Supply Switch

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VTH+ Positive going switching threshold
VTH+ = VDDB-VDDR
35 60 mV
VTH- Negative going switching threshold
VTH- = VDDB-VDDR
-60 -35 mV
VHYST Switching voltage hysteresis
VHYST = VTH+-VTH-
30 70 110 mV
IBASVBAT VDDB input leakage current VDDB = 1.65 V, Battery switch open 20 nA
VDROP VDROP= VDDB - VDDSW(1) 50 mV
(1) Battery switch closed. Current = 400 µA

5.19 RFPMM, Bandgap Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF Output voltage VDDSW = 1.4 V to 1.65 V 892 908 mV

5.20 RFPMM, Voltage Doubler

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VDD2X Output voltage VDDSW = 1.4 V, IDD2X = 1 µA, cont = 0 2 × VDDSW – 74mV mV
VDD2X Output voltage VDDSW = 1.4 V, IDD2X = 100 µA, cont = 1 2 × VDDSW – 104mV mV

5.21 RFPMM, Voltage Supervision

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER VDDSW MIN TYP MAX UNIT
VDDBTH+ Positive threshold 1.5 V 1.45 V
VDDBTH- Negative threshold 1.5 V 1.40 V
VDDSWTH+ Positive threshold 1.40 V
VDDSWTH- Negative threshold 1.35 V
VDDDTH+ Positive threshold 1.5 V 1.00 V
VDDDTH- Negative threshold 1.5 V 0.90 V
VDD2XTH+ Positive threshold 1.5 V 2.70 V
VDD2XTH- Negative threshold 1.5 V 2.475
V

5.22 SD14, Performance

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
fM Modulator clock frequency Internal LF oscillator as clock source for SD14 module 2 kHz
RES Resolution 8 14 Bit
OSR Oversampling ratio 40 2048
B Bandwidth of input signal 1 Hz
VI Input voltage range VI = VADCx - VSVSS 0 VREF mV
Voffset Offset error Complete signal chain -0.75 0.75 % of FSR(2)
VGErr Gain error(1) complete signal chain -2% 2%
∆EG/∆T Gain error temperature coefficient. (3) complete signal chain 100 ppm/K
EUnadjusted Total unadjusted error -2 2 % of FSR(2)
tStart Startup time 20 CLK cycles
(1) The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact – Gnom)/Gnom. It covers process, temperature and supply voltage variations.
(2) FSR = Full Scale Range (SD14 pre-amplifier Gain PGA gain - SD14 gain =1) .
(3) Not production tested.

5.23 SVSS Generator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VSVSS Output voltage ISVSS = -5uA .. 0uA 80 125 165 mV
tSettling Settling time after switching SVSS on (95% of final voltage) Switch from VIRTGND = 1 to VIRTGND = 0 400 1000 ms

5.24 Thermistor Bias Generator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IOUT,TH Output current VOUT = 0 to 0.7 V 2.0 2.4 3.0 µA

5.25 Temperature Sensor

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tc Temperature coefficient 35.7 LSB/K

5.26 RF13M, Power Supply and Recommended Operating Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VDDH Antenna rectified voltage IDDH = 100 µA 1.8 2 3.6 V
CIN Input capacitance 2 V RMS 31.5 35 38.5 pF

5.27 RF13M, ISO/IEC 15693 ASK Demodulator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
DR100 Input signal data rate 100% downlink modulation, 100% ASK, ISO/IEC 15693 6 26 kbps
m100 Modulation depth 100%, test as defined in ISO10373 90% 100%
m10 Modulation depth 10%, test as defined in ISO10373 7% 30%
|tPLH– tPHL| Delta propagation delay of RXD_10 to VIN 0 2.35 µs
tPLH, tPHL Propagation delay of RXD_10 to VIN 0 7.07 µs
tpd100 Propagation delay of RXD_100 7.07 µs
tD100 Minimum pulse duration of RxD_100 5 µs

5.28 RF13M, ISO/IEC 15693 Compliant Load Modulator

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
fPICC Uplink subcarrier modulation frequency 0.2 1 MHz
VA_MOD Modulated antenna voltage, VA_unmod = 2,3V 0.5 V
VSUB15 Uplink modulation subcarrier level, ISO/IEC 15693 10 mV