JAJSGO9C
July 2013 – May 2017
TAS5760L
PRODUCTION DATA.
1
特長
2
アプリケーション
3
概要
Device Images
機能ブロック図
出力電力とPVDDとの関係
4
改訂履歴
5
Pin Configuration and Functions
Pin Functions
Pin Functions
6
Specifications
6.1
Absolute Maximum Ratings
6.2
ESD Ratings
6.3
Recommended Operating Conditions
6.4
Thermal Information
6.5
Digital I/O Pins
6.6
Master Clock
6.7
Serial Audio Port
6.8
Protection Circuitry
6.9
Speaker Amplifier in All Modes
6.10
Speaker Amplifier in Stereo Bridge-Tied Load (BTL) Mode
6.11
Speaker Amplifier in Mono Parallel Bridge-Tied Load (PBTL) Mode
6.12
I²C Control Port
6.13
Typical Idle, Mute, Shutdown, Operational Power Consumption
6.14
Typical Speaker Amplifier Performance Characteristics (Stereo BTL Mode)
6.15
Typical Performance Characteristics (Mono PBTL Mode)
7
Parameter Measurement Information
8
Detailed Description
8.1
Overview
8.2
Functional Block Diagram
8.2.1
Functional Block Diagram
8.3
Feature Description
8.3.1
Power Supplies
8.3.2
Speaker Amplifier Audio Signal Path
8.3.2.1
Serial Audio Port (SAP)
8.3.2.1.1
I²S Timing
8.3.2.1.2
Left-Justified
8.3.2.1.3
Right-Justified
8.3.2.2
DC Blocking Filter
8.3.2.3
Digital Boost and Volume Control
8.3.2.4
Digital Clipper
8.3.2.5
Closed-Loop Class-D Amplifier
8.3.3
Speaker Amplifier Protection Suite
8.3.3.1
Speaker Amplifier Fault Notification (SPK_FAULT Pin)
8.3.3.2
DC Detect Protection
8.4
Device Functional Modes
8.4.1
Hardware Control Mode
8.4.1.1
Speaker Amplifier Shut Down (SPK_SD Pin)
8.4.1.2
Serial Audio Port in Hardware Control Mode
8.4.1.3
Soft Clipper Control (SFT_CLIP Pin)
8.4.1.4
Speaker Amplifier Switching Frequency Select (FREQ/SDA Pin)
8.4.1.5
Parallel Bridge Tied Load Mode Select (PBTL/SCL Pin)
8.4.1.6
Speaker Amplifier Sleep Enable (SPK_SLEEP/ADR Pin)
8.4.1.7
Speaker Amplifier Gain Select (SPK_GAIN [1:0] Pins)
8.4.1.8
Considerations for Setting the Speaker Amplifier Gain Structure
8.4.1.8.1
Recommendations for Setting the Speaker Amplifier Gain Structure in Hardware Control Mode
8.4.2
Software Control Mode
8.4.2.1
Speaker Amplifier Shut Down (SPK_SD Pin)
8.4.2.2
Serial Audio Port Controls
8.4.2.2.1
Serial Audio Port (SAP) Clocking
8.4.2.3
Parallel Bridge Tied Load Mode via Software Control
8.4.2.4
Speaker Amplifier Gain Structure
8.4.2.4.1
Speaker Amplifier Gain in Software Control Mode
8.4.2.4.2
Considerations for Setting the Speaker Amplifier Gain Structure
8.4.2.4.3
Recommendations for Setting the Speaker Amplifier Gain Structure in Software Control Mode
8.4.2.5
I²C Software Control Port
8.4.2.5.1
Setting the I²C Device Address
8.4.2.5.2
General Operation of the I²C Control Port
8.4.2.5.3
Writing to the I²C Control Port
8.4.2.5.4
Reading from the I²C Control Port
8.5
Register Maps
8.5.1
Control Port Registers - Quick Reference
8.5.2
Control Port Registers - Detailed Description
8.5.2.1
Device Identification Register (0x00)
Table 9.
Device Identification Register Field Descriptions
8.5.2.2
Power Control Register (0x01)
Table 10.
Power Control Register Field Descriptions
8.5.2.3
Digital Control Register (0x02)
Table 11.
Digital Control Register Field Descriptions
8.5.2.4
Volume Control Configuration Register (0x03)
Table 12.
Volume Control Configuration Register Field Descriptions
8.5.2.5
Left Channel Volume Control Register (0x04)
Table 13.
Left Channel Volume Control Register Field Descriptions
8.5.2.6
Right Channel Volume Control Register (0x05)
Table 14.
Right Channel Volume Control Register Field Descriptions
8.5.2.7
Analog Control Register (0x06)
Table 15.
Analog Control Register Field Descriptions
8.5.2.8
Reserved Register (0x07)
8.5.2.9
Fault Configuration and Error Status Register (0x08)
Table 16.
Fault Configuration and Error Status Register Field Descriptions
8.5.2.10
Reserved Controls (9 / 0x09) - (15 / 0x0F)
8.5.2.11
Digital Clipper Control 2 Register (0x10)
Table 17.
Digital Clipper Control 2 Register Field Descriptions
8.5.2.12
Digital Clipper Control 1 Register (0x11)
Table 18.
Digital Clipper Control 1 Register Field Descriptions
9
Application and Implementation
9.1
Application Information
9.2
Typical Applications
9.2.1
Stereo BTL Using Software Control
9.2.1.1
Design Requirements
9.2.1.2
Detailed Design Procedure
9.2.1.2.1
Startup Procedures- Software Control Mode
9.2.1.2.2
Shutdown Procedures- Software Control Mode
9.2.1.2.3
Component Selection and Hardware Connections
9.2.1.2.3.1
I²C Pullup Resistors
9.2.1.2.3.2
Digital I/O Connectivity
9.2.1.2.4
Recommended Startup and Shutdown Procedures
9.2.1.3
Application Curves
9.2.2
Stereo BTL Using Hardware Control
9.2.2.1
Design Requirements
9.2.2.2
Detailed Design Procedure
9.2.2.2.1
Startup Procedures- Hardware Control Mode
9.2.2.2.2
Shutdown Procedures- Hardware Control Mode
9.2.2.2.3
Digital I/O Connectivity
9.2.2.3
Application Curves
9.2.3
Mono PBTL Using Software Control
9.2.3.1
Design Requirements
9.2.3.2
Detailed Design Procedure
9.2.3.2.1
Startup Procedures- Software Control Mode
9.2.3.2.2
Shutdown Procedures- Software Control Mode
9.2.3.2.3
Component Selection and Hardware Connections
9.2.3.2.3.1
I²C Pull-Up Resistors
9.2.3.2.3.2
Digital I/O Connectivity
9.2.3.3
Application Curves
9.2.4
Mono PBTL Using Hardware Control
9.2.4.1
Design Requirements
9.2.4.2
Detailed Design Procedure
9.2.4.2.1
Startup Procedures- Hardware Control Mode
9.2.4.2.2
Shutdown Procedures- Hardware Control Mode
9.2.4.2.3
Component Selection and Hardware Connections
9.2.4.2.4
Digital I/O Connectivity
9.2.4.3
Application Curve
9.2.5
Stereo BTL Using Software Control, 32-Pin DAP Package Option
9.2.5.1
Design Requirements
9.2.5.2
Detailed Design Procedure
9.2.5.2.1
Startup Procedures- Software Control Mode
9.2.5.2.2
Shutdown Procedures- Software Control Mode
9.2.5.2.3
Component Selection and Hardware Connections
9.2.5.2.3.1
I²C Pullup Resistors
9.2.5.2.3.2
Digital I/O Connectivity
9.2.5.2.4
Recommended Startup and Shutdown Procedures
9.2.5.3
Application Curve
9.2.6
Stereo BTL Using Hardware Control, 32-Pin DAP Package Option
9.2.6.1
Design Requirements
9.2.6.2
Detailed Design Procedure
9.2.6.2.1
Startup Procedures- Hardware Control Mode
9.2.6.2.2
Shutdown Procedures- Hardware Control Mode
9.2.6.2.3
Digital I/O Connectivity
9.2.6.3
Application Curve
9.2.7
Mono PBTL Using Software Control, 32-Pin DAP Package Option
9.2.7.1
Design Requirements
9.2.7.2
Detailed Design Procedure
9.2.7.2.1
Startup Procedures- Software Control Mode
9.2.7.2.2
Shutdown Procedures- Software Control Mode
9.2.7.2.3
Component Selection and Hardware Connections
9.2.7.2.3.1
I²C Pull-Up Resistors
9.2.7.2.3.2
Digital I/O Connectivity
9.2.7.3
Application Curves
9.2.8
Mono PBTL Using Hardware Control, 32-Pin DAP Package Option
9.2.8.1
Design Requirements
9.2.8.2
Detailed Design Procedure
9.2.8.2.1
Startup Procedures- Hardware Control Mode
9.2.8.2.2
Shutdown Procedures- Hardware Control Mode
9.2.8.2.3
Component Selection and Hardware Connections
9.2.8.2.4
Digital I/O Connectivity
9.2.8.3
Application Curves
10
Power Supply Recommendations
10.1
DVDD Supply
10.2
PVDD Supply
11
Layout
11.1
Layout Guidelines
11.1.1
General Guidelines for Audio Amplifiers
11.1.2
Importance of PVDD Bypass Capacitor Placement on PVDD Network
11.1.3
Optimizing Thermal Performance
11.1.3.1
Device, Copper, and Component Layout
11.1.3.2
Stencil Pattern
11.1.3.2.1
PCB Footprint and Via Arrangement
11.1.3.2.1.1
Solder Stencil
11.2
Layout Example
12
デバイスおよびドキュメントのサポート
12.1
ドキュメントのサポート
12.1.1
関連資料
12.2
コミュニティ・リソース
12.3
商標
12.4
静電気放電に関する注意事項
12.5
Glossary
13
メカニカル、パッケージ、および注文情報
パッケージ・オプション
メカニカル・データ(パッケージ|ピン)
DCA|48
MPDS044E
DAP|32
MPDS380A
サーマルパッド・メカニカル・データ
DCA|48
PPTD094K
DAP|32
PPTD001K
発注情報
jajsgo9c_oa
jajsgo9c_pm
6.14
Typical Speaker Amplifier Performance Characteristics (Stereo BTL Mode)
At T
A
= 25°C, f
SPK_AMP
= 384 kHz, input signal is 1 kHz Sine, unless otherwise noted. Filter used for 8 Ω = 22 µH + 0.68 µF, Filter used for 6 Ω = 15 µH + 0.68 µF, Filter used for 4 Ω = 10 µH + 0.68 µF unless otherwise noted.
Thermal Limits are referenced to TAS5760xxEVM Rev D
Figure 1.
Output Power vs PVDD
PVDD = 12 V, P
OSPK
= 1 W
Figure 3.
THD+N vs Frequency
PVDD = 12 V, Both Channels Driven
Figure 5.
THD+N vs Output Power
Figure 7.
Efficiency vs Output Power
Figure 9.
PVDD PSRR vs Frequency
Figure 11.
Idle Current Draw vs PVDD (Filterless)
Figure 13.
Shutdown Current Draw vs PVDD (Filterless)
PVDD = 12 V, P
OSPK
= 1 W
Figure 2.
THD+N vs Frequency
Figure 4.
Idle Channel Noise vs PVDD
PVDD = 12 V, Both Channels Driven
Figure 6.
THD+N vs Output Power
Figure 8.
Crosstalk vs Frequency
Figure 10.
DVDD PSRR vs Frequency
With LC Filter as shown on the EVM
Figure 12.
Idle Current Draw vs PVDD
At T
A
= 25°C, f
SPK_AMP
= 768 kHz, input signal is 1 kHz Sine, unless otherwise noted.
Filter used for 8 Ω = 22 µH + 0.68 µF, Filter used for 6 Ω = 15 µH + 0.68 µF, Filter used for 4 Ω = 10 µH + 0.68 µF unless otherwise noted.
Thermal Limits are referenced to TAS5760xxEVM Rev D
Figure 14.
Output Power vs PVDD
PVDD = 12 V, P
OSPK
= 1 W
Figure 16.
THD+N vs Frequency
PVDD = 12 V, Both Channels Driven
Figure 18.
THD+N vs Output Power
Figure 20.
Efficiency vs Output Power
Figure 22.
PVDD PSRR vs Frequency
Figure 24.
Idle Current Draw vs PVDD (with LC Filter as shown on EVM)
PVDD = 12 V, P
OSPK
= 1 W
Figure 15.
THD+N vs Frequency
Figure 17.
Idle Channel Noise vs PVDD
PVDD = 12 V, Both Channels Driven
Figure 19.
THD+N vs Output Power
Figure 21.
Crosstalk vs Frequency
Figure 23.
Idle Current Draw vs PVDD (Filterless)
Figure 25.
Shutdown Current Draw vs PVDD (Filterless)