SLOSE88 December   2024 TAS6754-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 ESD Ratings
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supply
        1. 7.3.1.1 Power-Supply Sequence
          1. 7.3.1.1.1 Power-Up Sequence
          2. 7.3.1.1.2 Power-Down Sequence
        2. 7.3.1.2 Device Initialization and Power-On-Reset (POR)
      2. 7.3.2 Serial Audio Port
        1. 7.3.2.1 Left-Justified Timing
        2. 7.3.2.2 I2S Mode
        3. 7.3.2.3 DSP Mode
        4. 7.3.2.4 TDM Mode
        5. 7.3.2.5 SDOUT - Data Output
        6. 7.3.2.6 Device Clocking
          1. 7.3.2.6.1 Clock Rates
          2. 7.3.2.6.2 Clock Halt Auto-recovery
          3. 7.3.2.6.3 Sample Rate on the Fly Change
        7. 7.3.2.7 Clock Error Handling
      3. 7.3.3 Digital Audio Processing
        1. 7.3.3.1 PVDD Foldback
        2. 7.3.3.2 High-Pass Filter
        3. 7.3.3.3 Analog Gain
        4. 7.3.3.4 Digital Volume Control
          1. 7.3.3.4.1 Auto Mute
        5. 7.3.3.5 Gain Compensation Biquads
        6. 7.3.3.6 Low Latency Signal Path
        7. 7.3.3.7 Full Feature Low Latency Path
      4. 7.3.4 Class-D operation and Spread Spectrum Control
        1. 7.3.4.1 1L Modulation
        2. 7.3.4.2 High-Frequency Pulse-Width Modulator (PWM)
        3. 7.3.4.3 Spread Spectrum Control
        4. 7.3.4.4 Gate Drive
        5. 7.3.4.5 Power FETs
      5. 7.3.5 Load Diagnostics
        1. 7.3.5.1 DC Load Diagnostics
          1. 7.3.5.1.1 Automatic DC Load Diagnostics at Device Initialization
          2. 7.3.5.1.2 Automatic DC load diagnostics during Hi-Z or PLAY
          3. 7.3.5.1.3 Manual start of DC load diagnostics
          4. 7.3.5.1.4 Short-to-Ground
          5. 7.3.5.1.5 Short-to-Power
          6. 7.3.5.1.6 Shorted-Load and Open-Load
        2. 7.3.5.2 Line Output Diagnostics
        3. 7.3.5.3 AC Load Diagnostics
          1. 7.3.5.3.1 Operating Principal
          2. 7.3.5.3.2 Stimulus
          3. 7.3.5.3.3 Load Impedance
          4. 7.3.5.3.4 Tweeter Detection
        4. 7.3.5.4 Real-Time Load Diagnostics
        5. 7.3.5.5 DC Resistance Measurement
      6. 7.3.6 Protection and Monitoring
        1. 7.3.6.1 Overcurrent Limit (Cycle-By-Cycle)
        2. 7.3.6.2 Overcurrent Shutdown
        3. 7.3.6.3 Current Sense
        4. 7.3.6.4 DC Detect
        5. 7.3.6.5 Digital Clip Detect
        6. 7.3.6.6 Charge Pump
        7. 7.3.6.7 Temperature Protection and Monitoring
          1. 7.3.6.7.1 Overtemperature Shutdown
          2. 7.3.6.7.2 Overtemperature Warning
          3. 7.3.6.7.3 Thermal Gain Foldback
        8. 7.3.6.8 Power Failures
      7. 7.3.7 Hardware Control Pins
        1. 7.3.7.1 FAULT Pin
        2. 7.3.7.2 PD Pin
        3. 7.3.7.3 STBY Pin
        4. 7.3.7.4 GPIO Pins
          1. 7.3.7.4.1 General Purpose Input
          2. 7.3.7.4.2 General Purpose Output
        5. 7.3.7.5 Advanced GPIO functions
          1. 7.3.7.5.1 Clock Synchronization
            1. 7.3.7.5.1.1 External SYNC signal (GPIO sync)
            2. 7.3.7.5.1.2 Synchronization through the audio serial clock (SCLK)
            3. 7.3.7.5.1.3 TAS6754-Q1 as clock source for external devices
    4. 7.4 Device Functional Modes
      1. 7.4.1 Internal Reporting Signals
        1. 7.4.1.1 Fault Signal
        2. 7.4.1.2 Warning Signal
      2. 7.4.2 Device States and Flags
        1. 7.4.2.1 Audio Channel States
          1. 7.4.2.1.1 SHUTDOWN State
          2. 7.4.2.1.2 DEEP SLEEP State
          3. 7.4.2.1.3 LOAD DIAG State
          4. 7.4.2.1.4 SLEEP State
          5. 7.4.2.1.5 Hi-Z State
          6. 7.4.2.1.6 PLAY State
          7. 7.4.2.1.7 FAULT State
          8. 7.4.2.1.8 Auto Recovery (AUTOREC) State
        2. 7.4.2.2 Status and Memory Registers
      3. 7.4.3 Fault Events
        1. 7.4.3.1 Power Fault Events
          1. 7.4.3.1.1 DVDD Power-On-Reset (POR)
          2. 7.4.3.1.2 DVDD Undervoltage Fault
          3. 7.4.3.1.3 VBAT Undervoltage Fault
          4. 7.4.3.1.4 PVDD Overvoltage Fault
          5. 7.4.3.1.5 PVDD Undervoltage Fault
        2. 7.4.3.2 Overtemperature Shutdown (OTSD) Event
        3. 7.4.3.3 Overcurrent Limit Fault Event
        4. 7.4.3.4 Overcurrent Shutdown Event
        5. 7.4.3.5 DC Fault Event
        6. 7.4.3.6 Clock Error Event
        7. 7.4.3.7 Charge Pump Fault Event
      4. 7.4.4 Warning Events
        1. 7.4.4.1 Overtemperature Warning Event
        2. 7.4.4.2 Overcurrent Limit Warning Event
        3. 7.4.4.3 Clip Detect Warning Event
    5. 7.5 Programming
      1. 7.5.1 I2C Serial Communication Bus
      2. 7.5.2 I2C Address Selection
      3. 7.5.3 I2C Bus Protocol
      4. 7.5.4 Random Write
      5. 7.5.5 Sequential Write
      6. 7.5.6 Random Read
      7. 7.5.7 Sequential Read
  9. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Reconstruction Filter Design
    2. 8.2 Typical Application
      1. 8.2.1 BTL Application
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Electrical Connection of Thermal pad and Heat Sink
        2. 8.4.1.2 EMI Considerations
        3. 8.4.1.3 General Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

I2C Bus Protocol

The I2C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in byte (8- bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the controller device driving a start condition on the bus and ends with the controller device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. The controller generates the 7-bit target address and the read/write (R/W) bit to open communication with another device and then wait for an acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate an acknowledgment. When this occurs, the controller transmits the next byte of the sequence. Each device is addressed by a unique 7-bit target address plus a R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pull-up resistor must be used for the SDA and SCL signals to set the HIGH level for the bus. The number of bytes that can be transmitted between start and stop conditions is unlimited. When the last word transfers, the controller generates a stop condition to release the bus.

TAS6754-Q1 Typical I2C SequenceFigure 7-23 Typical I2C Sequence
TAS6754-Q1 SCL and SDA TimingFigure 7-24 SCL and SDA Timing