SLOS823D December   2012  – March 2020 THS4531A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     1-kHz FFT Plot on Audio Analyzer
  4. Revision History
  5. Related Products
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = 2.7 V
    6. 7.6 Electrical Characteristics: VS = 5 V
    7. 7.7 Typical Characteristics
      1. 7.7.1 Typical Characteristics: VS = 2.7 V
      2. 7.7.2 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
        1. 8.3.1.1 Setting the Output Common-Mode Voltage
      2. 8.3.2 Power Down
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Frequency Response, and Output Impedance
      2. 9.1.2  Distortion
      3. 9.1.3  Slew Rate, Transient Response, Settling Time, Overdrive, Output Voltage, and Turnon and Turnoff Time
      4. 9.1.4  Common-Mode and Power Supply Rejection
      5. 9.1.5  VOCM Input
      6. 9.1.6  Balance Error
      7. 9.1.7  Single-Supply Operation
      8. 9.1.8  Low-Power Applications and the Effects of Resistor Values on Bandwidth
      9. 9.1.9  Driving Capacitive Loads
      10. 9.1.10 Audio Performance
      11. 9.1.11 Audio On and Off Pop Performance
    2. 9.2 Typical Applications
      1. 9.2.1 SAR ADC Performance: THS4531A and ADS8321 Combined Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Audio ADC Driver Performance: THS4531A and PCM4204 Combined Performance
        1. 9.2.2.1 Detailed Design Procedure
        2. 9.2.2.2 Application Curves
      3. 9.2.3 SAR ADC Performance: THS4531A and ADS7945 Combined Performance
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curve
      4. 9.2.4 Differential-Input to Differential-Output Amplifier
        1. 9.2.4.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
      5. 9.2.5 Single-Ended to Differential FDA Configuration
        1. 9.2.5.1 Input Impedance
      6. 9.2.6 Single-Ended Input to Differential Output Amplifier
        1. 9.2.6.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.2.6.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 9.2.6.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
      7. 9.2.7 Differential Input to Single-Ended Output Amplifier
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

Detailed Design Procedure

The PCM4204 EVM is used to test the audio performance of the THS4531A as a drive amplifier. The standard PCM4204 EVM is provided with 4x OPA1632 fully differential amplifiers, which use the same pin out as the THS4531A. For testing, one of these amplifiers is replaced with a THS4531A device in same package (MSOP), gain changed to 1 V/V, and power supply changed to single supply 5 V. With single supply +5-V supply the output common-mode of the THS4531A defaults to 2.5 V as required at the input of the PCM4204. So the resistor connecting the VOCM input of the THS4531A to the input common-mode drive from the PCM4204 is optional and no performance change was noted with it connected or removed. The EVM power connections were modified by connecting positive supply inputs, 15 V, 5 VA, and 5 VD, to a 5-V external power supply (EXT 3.3 was not used) and connecting –15 V and all ground inputs to ground on the external power supply so only one external 5-V supply was needed to power all devices on the EVM.

An audio analyzer is used to provide an analog audio input to the EVM and the PCM formatted digital output is read by the digital input on the analyzer. Data was taken at fS = 96 kHz, and audio output uses PCM format. Other data rates and formats are expected to show similar performance in line with that shown in the data sheet.