JAJSLR8B April   2021  – September 2021 THVD1439 , THVD1439V , THVD1449 , THVD1449V

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  ESD Ratings, IEC
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Power Dissipation
    7. 6.7  Electrical Characteristics
    8. 6.8  Switching Characteristics (THVD1439, THVD1439V)
    9. 6.9  Switching Characteristics (THVD1449, THVD1449V)
    10. 6.10 代表的特性
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Electrostatic Discharge (ESD) Protection
      2. 8.3.2 Electrical Fast Transient (EFT) Protection
      3. 8.3.3 Surge Protection
      4. 8.3.4 Enhanced Receiver Noise Immunity
      5. 8.3.5 Failsafe Receiver
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Data Rate and Bus Length
        2. 9.2.1.2 Stub Length
        3. 9.2.1.3 Bus Loading
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • D|8
サーマルパッド・メカニカル・データ
発注情報

Surge Protection

Surge transients often result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the switching of power systems, including load changes and short circuit switching. These transients are often encountered in industrial environments, such as factory automation and power-grid systems.

Figure 8-5 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD transient. The diagram on the left shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are representative of events that may occur in factory environments in industrial and process automation.

The diagram on the right shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.

GUID-1994DA75-1666-4E5A-8A09-656F59102FFC-low.gifFigure 8-5 Power Comparison of ESD, EFT, and Surge Transients

Figure 8-6 shows the test setup used to validate THVD14x9 surge performance according to the IEC 61000-4-5 1.2/50-μs surge pulse.

GUID-2D7DFED5-00CF-4608-95C3-A3C9DA867EB5-low.gifFigure 8-6 THVD14x9(V) Surge Test Setup

THVD14x9(V) product family is robust to ±4-kV surge transients without the need for any external components. The transient current and voltage waveforms resulting from a +4-kV surge test as described in Figure 8-6 are shown in Figure 8-7. The bus pin voltage is clamped by the integrated surge protection diodes such that the internal circuitry is not damaged during the surge event. The clamping voltage at the bus pins for versus the total current from the surge generator is shown in Figure 8-8.

Figure 8-7 Transient current and voltage waveforms from +4-kV Surge Test. The current waveform is the total current output from the generator and the voltage waveform is the voltage at A or B pin of the transceiver.

Figure 8-8 Clamping voltage at bus pins vs total surge current from the surge generator