JAJSCG3 September 2016 TLV171 , TLV2171 , TLV4171
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
Voltage | Supply voltage, V+ to V− | –20 | 20 | V |
Signal input pin | (V−) − 0.5 | (V+) + 0.5 | ||
Current | Signal input pin | –10 | 10 | mA |
Output short-circuit(2) | Continuous | |||
Temperature | Operating, TA | –55 | 150 | °C |
Junction, TJ | 150 | |||
Storage, Tstg | –65 | 150 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±750 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Supply voltage (V+ – V–) | Single supply | 2.7 | 36 | V | |
Dual supply | ±1.35 | ±18 | |||
Specified temperature | –40 | +125 | °C |
THERMAL METRIC(1) | TLV171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DBV (SOT-23) | |||
8 PINS | 5 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 149.5 | 245.8 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 97.9 | 133.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 87.7 | 83.6 | °C/W |
ψJT | Junction-to-top characterization parameter | 35.5 | 18.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 89.5 | 83.1 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
THERMAL METRIC(1) | TLV2171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DGK (VSSOP) | |||
8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 134.3 | 175.2 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 72.1 | 74.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 60.6 | 22.2 | °C/W |
ψJT | Junction-to-top characterization parameter | 18.2 | 1.6 | °C/W |
ψJB | Junction-to-board characterization parameter | 53.8 | 22.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
THERMAL METRIC(1) | TLV4171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | PW (TSSOP) | |||
14 PINS | 14 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 93.2 | 106.9 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 51.8 | 24.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 49.4 | 59.3 | °C/W |
ψJT | Junction-to-top characterization parameter | 13.5 | 0.6 | °C/W |
ψJB | Junction-to-board characterization parameter | 42.2 | 54.3 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
OFFSET VOLTAGE | ||||||
VOS | Input offset voltage | TA = 25°C | 0.75 | ±2.7 | mV | |
TA = –40°C to +125°C | ±3.0 | |||||
dVOS/dT | Input offset voltage drift | TA = –40°C to +125°C | 1 | µV/°C | ||
PSRR | Input offset voltage vs power supply | VS = 4 V to 36 V, TA = –40°C to +125°C | 90 | 105 | dB | |
INPUT BIAS CURRENT | ||||||
IB | Input bias current | ±10 | pA | |||
IOS | Input offset current | ±4 | pA | |||
NOISE | ||||||
Input voltage noise | f = 0.1 Hz to 10 Hz | 3 | µVPP | |||
en | Input voltage noise density | f = 100 Hz | 27 | nV/√Hz | ||
f = 1 kHz | 16 | |||||
INPUT VOLTAGE | ||||||
VCM | Common-mode voltage range(1) | (V–) – 0.1 | (V+) – 2 | V | ||
CMRR | Common-mode rejection ratio | VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V, TA = –40°C to +125°C |
94 | 105 | dB | |
INPUT IMPEDANCE | ||||||
Differential | 100 || 3 | MΩ || pF | ||||
Common-mode | 6 || 3 | 1012 Ω || pF | ||||
OPEN-LOOP GAIN | ||||||
AOL | Open-loop voltage gain | VS = 36 V, (V–) + 0.35 V < VO < (V+) – 0.35 V, TA = –40°C to +125°C |
94 | 130 | dB | |
FREQUENCY RESPONSE | ||||||
GBP | Gain bandwidth product | 3.0 | MHz | |||
SR | Slew rate | G = +1 | 1.5 | V/µs | ||
tS | Settling time | To 0.1%, VS = ±18 V, G = +1, 10-V step | 6 | µs | ||
To 0.01% (12 bits), VS = ±18 V, G = +1, 10-V step |
10 | |||||
Overload recovery time | VIN × gain > VS | 2 | µs | |||
THD+N | Total harmonic distortion + noise | G = +1, f = 1 kHz, VO = 3 VRMS | 0.0002% | |||
OUTPUT | ||||||
VO | Voltage output swing | Positive rail, VS = ±18 V, RL = 10 kΩ, TA = 25°C |
160 | mV | ||
Negative rail, VS = ±18 V, RL = 10 kΩ, TA = 25°C |
90 | mV | ||||
RL = 10 kΩ, AOL ≥ 94 dB, TA = –40°C to +125°C |
(V–) + 0.35 | (V+) – 0.35 | V | |||
ISC | Short-circuit current | 25 | mA | |||
–35 | ||||||
CLOAD | Capacitive load drive | See Typical Characteristics | pF | |||
RO | Open-loop output resistance | f = 1 MHz, IO = 0 A | 150 | Ω | ||
POWER SUPPLY | ||||||
VS | Specified voltage range | 2.7 | 36 | V | ||
IQ | Quiescent current per amplifier | IO = 0 A, TA = –40°C to +125°C | 525 | 695 | µA | |
TEMPERATURE | ||||||
Specified range | –40 | 125 | °C | |||
Operating range | –55 | 150 | °C |
DESCRIPTION | FIGURE |
---|---|
Offset Voltage Production Distribution | Figure 1 |
Offset Voltage vs Common-Mode Voltage | Figure 2 |
Offset Voltage vs Common-Mode Voltage (Upper Stage) | Figure 3 |
Input Bias Current and Input Offset Current vs Temperature | Figure 4 |
Output Voltage Swing vs Output Current (Maximum Supply) | Figure 5 |
CMRR and PSRR vs Frequency (Referred-to-Input) | Figure 6 |
0.1-Hz to 10-Hz Noise | Figure 7 |
Input Voltage Noise Spectral Density vs Frequency | Figure 8 |
Quiescent Current vs Supply Voltage | Figure 9 |
Open-Loop Gain and Phase vs Frequency | Figure 10 |
Closed-Loop Gain vs Frequency | Figure 11 |
Open-Loop Gain vs Temperature | Figure 12 |
Open-Loop Output Impedance vs Frequency | Figure 13 |
Small-Signal Overshoot vs Capacitive Load | Figure 14, Figure 15 |
No Phase Reversal | Figure 16 |
Small-Signal Step Response (100 mV) | Figure 17, Figure 18 |
Large-Signal Step Response | Figure 19, Figure 20 |
Large-Signal Settling Time (10-V Positive Step) | Figure 21 |
Large-Signal Settling Time (10-V Negative Step) | Figure 22 |
Short-Circuit Current vs Temperature | Figure 23 |
Maximum Output Voltage vs Frequency | Figure 24 |
EMIRR IN+ vs Frequency | Figure 25 |
Distribution taken from 3500 amplifiers |
10 typical units shown |
100-mV output step, RL = 10 kΩ |
RL = 10 kΩ, CL = 100 pF |
G = +1, RL = 10 kΩ, CL = 100 pF |
10-V positive step, G = –1 |
10 typical units shown |
5 typical units shown |
100-mV output step, RL = 10 kΩ |
G = –1, RL = 10 kΩ, CL = 100 pF |
10-V negative step, G = –1 |