JAJSPO2D June   2010  – October 2024 TLV320AIC3104-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Switching Characteristics I2S/LJF/RJF Timing in Master Mode
    7. 6.7  Switching Characteristics I2S/LJF/RJF Timing in Slave Mode
    8. 6.8  Switching Characteristics DSP Timing in Master Mode
    9. 6.9  Switching Characteristics DSP Timing in Slave Mode
    10. 6.10 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Audio Data Converters
      2. 7.3.2  Stereo Audio ADC
        1. 7.3.2.1 Stereo Audio ADC High-Pass Filter
      3. 7.3.3  Automatic Gain Control (AGC)
      4. 7.3.4  Stereo Audio DAC
      5. 7.3.5  Digital Audio Processing for Playback
      6. 7.3.6  Digital Interpolation Filter
      7. 7.3.7  Delta-Sigma Audio DAC
      8. 7.3.8  Audio DAC Digital Volume Control
      9. 7.3.9  Analog Output Common-mode Adjustment
      10. 7.3.10 Audio DAC Power Control
      11. 7.3.11 Audio Analog Inputs
      12. 7.3.12 Analog Input Bypass Path Functionality
      13. 7.3.13 ADC PGA Signal Bypass Path Functionality
      14. 7.3.14 Input Impedance and VCM Control
      15. 7.3.15 MICBIAS Generation
      16. 7.3.16 Analog Fully Differential Line Output Drivers
      17. 7.3.17 Analog High-Power Output Drivers
      18. 7.3.18 Short-Circuit Output Protection
      19. 7.3.19 Jack and Headset Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Digital Audio Processing for Record Path
      2. 7.4.2 Increasing DAC Dynamic Range
      3. 7.4.3 Passive Analog Bypass During Power Down
      4. 7.4.4 Hardware Reset
    5. 7.5 Programming
      1. 7.5.1  Digital Control Serial Interface
      2. 7.5.2  I2C Control Interface
      3. 7.5.3  I2C Bus Debug in a Glitched System
      4. 7.5.4  Digital Audio Data Serial Interface
      5. 7.5.5  Right-Justified Mode
      6. 7.5.6  Left-Justified Mode
      7. 7.5.7  I2S Mode
      8. 7.5.8  DSP Mode
      9. 7.5.9  TDM Data Transfer
      10. 7.5.10 Audio Clock Generation
  9. Register Maps
    1. 8.1 Output Stage Volume Controls
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 External Speaker Driver in Infotainment and Cluster Applications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 External Speaker Amplifier With Separate Line Outputs
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Device Nomenclature
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Stereo Audio ADC

The TLV320AIC3104-Q1 includes a stereo audio ADC, which uses a delta-sigma modulator with 128-times oversampling in single-rate mode, followed by a digital decimation filter. The ADC supports sampling rates from 8 kHz to 48 kHz in single-rate mode, and up to 96 kHz in dual-rate mode. Whenever the ADC or DAC is in operation, the device requires that an audio master clock be provided and appropriate audio clock generation be set up within the device.

In order to provide optimal system power dissipation, the stereo ADC can be powered one channel at a time, to support the case where only mono record capability is required. In addition, both channels can be fully powered or entirely powered down.

The integrated digital decimation filter removes high-frequency content and downsamples the audio data from an initial sampling rate of 128 fS to the final output sampling rate of fS. The decimation filter provides a linear phase output response with a group delay of 17 / fS. The –3-dB bandwidth of the decimation filter extends to 0.45 fS and scales with the sample rate (fS). The filter has minimum 75-dB attenuation over the stop band from 0.55 fS to 64 fS. Independent digital high-pass filters are also included with each ADC channel, with a corner frequency that can be independently set.

Because of the oversampling nature of the audio ADC and the integrated digital decimation filtering, requirements for analog antialiasing filtering are very relaxed. The TLV320AIC3104-Q1 integrates a second-order analog antialiasing filter with 20-dB attenuation at 1 MHz. This filter, combined with the digital decimation filter, provides sufficient antialiasing filtering without requiring additional external components.

The ADC is preceded by a programmable gain amplifier (PGA), which allows analog gain control from 0 dB to 59.5 dB in steps of 0.5 dB. The PGA gain changes are implemented with an internal soft-stepping algorithm that only changes the actual volume level by one 0.5-dB step every one or two ADC output samples, depending on the register programming (see page 0, registers 19 and 22). This soft-stepping ensures that volume control changes occur smoothly with no audible artifacts. On reset, the PGA gain defaults to a mute condition, and on power down, the PGA soft-steps the volume to mute before shutting down. A read-only flag is set whenever the gain applied by PGA equals the desired value set by the register. The soft-stepping control can also be disabled by programming a register bit. When soft stepping is enabled, the audio master clock must be applied to the part after the ADC power-down register is written to ensure the soft-stepping to mute has completed. When the ADC power-down flag is no longer set, the audio master clock can be shut down.