JAJSL95G March   2007  – February 2021 TLV320AIC3104

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Audio Data Serial Interface Timing Requirements
    7. 8.7 Timing Diagrams
    8. 8.8 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagrams
    3. 10.3 Feature Description
      1. 10.3.1  Hardware Reset
      2. 10.3.2  Digital Audio Data Serial Interface
        1. 10.3.2.1 Right-Justified Mode
        2. 10.3.2.2 Left-Justified Mode
        3. 10.3.2.3 I2S Mode
        4. 10.3.2.4 DSP Mode
        5. 10.3.2.5 TDM Data Transfer
      3. 10.3.3  Audio Data Converters
        1. 10.3.3.1 Audio Clock Generation
        2. 10.3.3.2 Stereo Audio ADC
          1. 10.3.3.2.1 Stereo Audio ADC High-Pass Filter
          2. 10.3.3.2.2 Automatic Gain Control (AGC)
            1. 10.3.3.2.2.1 Target Level
            2. 10.3.3.2.2.2 Attack Time
            3. 10.3.3.2.2.3 Decay Time
            4. 10.3.3.2.2.4 Noise Gate Threshold
            5. 10.3.3.2.2.5 Maximum PGA Gain Applicable
      4. 10.3.4  Stereo Audio DAC
        1. 10.3.4.1 Digital Audio Processing for Playback
        2. 10.3.4.2 Digital Interpolation Filter
        3. 10.3.4.3 Delta-Sigma Audio DAC
        4. 10.3.4.4 Audio DAC Digital Volume Control
        5. 10.3.4.5 Increasing DAC Dynamic Range
        6. 10.3.4.6 Analog Output Common-Mode Adjustment
        7. 10.3.4.7 Audio DAC Power Control
      5. 10.3.5  Audio Analog Inputs
      6. 10.3.6  Analog Fully Differential Line Output Drivers
      7. 10.3.7  Analog High-Power Output Drivers
      8. 10.3.8  Input Impedance and VCM Control
      9. 10.3.9  MICBIAS Generation
      10. 10.3.10 Short-Circuit Output Protection
      11. 10.3.11 Jack and Headset Detection
    4. 10.4 Device Functional Modes
      1. 10.4.1 Bypass Path Mode
        1. 10.4.1.1 ADC PGA Signal Bypass Path Functionality
        2. 10.4.1.2 Passive Analog Bypass During Power Down
      2. 10.4.2 Digital Audio Processing for Record Path
    5. 10.5 Programming
      1. 10.5.1 I2C Control Interface
        1. 10.5.1.1 I2C Bus Debug in a Glitched System
      2. 10.5.2 Register Map Structure
    6. 10.6 Register Maps
      1. 10.6.1 Output Stage Volume Controls
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Applications
      1. 11.2.1 Typical Connections With Headphone and External Speaker Driver in Portable Application
        1. 11.2.1.1 Design Requirements
        2. 11.2.1.2 Detailed Design Procedure
        3. 11.2.1.3 Application Curves
      2. 11.2.2 Typical Connections for AC-Coupled Headphone Output With Separate Line Outputs and External Speaker Amplifier
        1. 11.2.2.1 Design Requirements
        2. 11.2.2.2 Detailed Design Procedure
        3. 11.2.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 ドキュメントの更新通知を受け取る方法
    2. 14.2 サポート・リソース
    3. 14.3 Trademarks
    4. 14.4 静電気放電に関する注意事項
    5. 14.5 用語集
      1.      Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RHB|32
サーマルパッド・メカニカル・データ
発注情報

Passive Analog Bypass During Power Down

Programming the TLV320AIC3104 to passive analog bypass occurs by configuring the output stage switches for passthrough. This is done by opening switches SW-L0, SW-L3, SW-R0, and SW-R3 and closing either SW-L1 or SW-L2 and SW-R1 or SW-R2. See Figure 10-21. Programming this mode is done by writing to page 0, register 108.

Connecting the MIC1LP/LINE1LP input signal to the LEFT_LOP pin is done by closing SW-L1 and opening SW-L0; this action is done by writing a 1 to page 0, register 108, bit D0. Connecting the MIC2L/LINE2L input signal to the LEFT_LOP pin is done by closing SW-L2 and opening SW-L0; this action is done by writing a 1 to page 0, register 108, bit D2. Connecting the MIC1LM/LINE1LM input signal to the LEFT_LOM pin is done by closing SW-L4 and opening SW-L3; this action is done by writing a 1 to page 0, register 108, bit D1.

Connecting the MIC1RP/LINE1RP input signal to the RIGHT_LOP pin is done by closing SW-R1 and opening SW-R0; this action is done by writing a 1 to page 0, register 108, bit D4. Connecting the MIC2R/LINE2R input signal to the RIGHT_LOP pin is done by closing SW-R2 and opening SW-R0; this action is done by writing a 1 to page 0, register 108, bit D6. Connecting MIC1RM/LINE1RM input signal to the RIGHT_LOM pin is done by closing SW-R4 and opening SW-R3; this action is done by writing a 1 to page 0, register 108, bit D5. A diagram of the passive analog bypass mode configuration is shown in Figure 10-21.

In general, connecting two switches to the same output pin should be avoided, as this error shorts two input signals together, and would likely cause distortion of the signal as the two signals are in contention. Poor frequency response would also likely occur.

GUID-D6D2A9B6-AF3C-4CE0-AD7E-5D256763E96B-low.gifFigure 10-21 Passive Analog Bypass Mode Configuration